RESUMO
Mouse models are used to model human diseases and perform pharmacological efficacy testing to advance therapies to humans; most of these studies are conducted in room temperature conditions. At room temperature (22°C), mice are cold-stressed and must use brown adipose tissue (BAT) to maintain body temperature. This cold stress increases catecholamine tone to maintain adipocyte lipid release via lipolysis, which will fuel adaptive thermogenesis. Maintaining rodents at thermoneutral temperatures (28°C) ameliorates the need for adaptive thermogenesis, thus reducing catecholamine tone and BAT activity. Cardiovascular tone is also determined by catecholamine levels in rodents, as ß-adrenergic stimuli are primary drivers of not only lipolytic but also ionotropic and chronotropic responses. As mice have increased catecholamine tone at room temperature, we investigated how thermoneutral housing conditions would impact cardiometabolic function. Here, we show a rapid and reversible effect of thermoneutrality on both heart rate and blood pressure in chow-fed animals, which was blunted in animals fed a high-fat diet. Animals subjected to transverse aortic constriction displayed compensated hypertrophy at room temperature, whereas animals displayed less hypertrophy and a trend toward worse systolic function at thermoneutrality. Despite these dramatic changes in blood pressure and heart rate at thermoneutral housing conditions, enalapril effectively improved cardiac hypertrophy and gene expression alterations. There were surprisingly few differences in cardiac parameters in high-fat-fed animals at thermoneutrality. Overall, these data suggest that thermoneutral housing may alter some aspects of cardiac remodeling in preclinical mouse models of heart failure.NEW & NOTEWORTHY Thermoneutral housing conditions cause rapid and reversible changes in mouse heart rate and blood pressure. Despite dramatic reductions in heart rate and blood pressure, thermoneutrality reduced the compensatory hypertrophic response in a pressure overload heart failure model compared with room temperature housing, and ACE inhibitors were still efficacious to prevent pressure overload-induced cardiac remodeling. The effects of thermoneutrality on heart rate and blood pressure are abrogated in the context of diet-induced obesity.
Assuntos
Regulação da Temperatura Corporal , Doenças Cardiovasculares/fisiopatologia , Modelos Animais de Doenças , Abrigo para Animais/normas , Animais , Doenças Cardiovasculares/metabolismo , Frequência Cardíaca , Masculino , Camundongos , Camundongos Endogâmicos C57BL , TemperaturaRESUMO
Diabetic nephropathy remains an area of high unmet medical need, with current therapies that slow down, but do not prevent, the progression of disease. A reduced phosphorylation state of adenosine monophosphate-activated protein kinase (AMPK) has been correlated with diminished kidney function in both humans and animal models of renal disease. Here, we describe the identification of novel, potent, small molecule activators of AMPK that selectively activate AMPK heterotrimers containing the ß1 subunit. After confirming that human and rodent kidney predominately express AMPK ß1, we explore the effects of pharmacological activation of AMPK in the ZSF1 rat model of diabetic nephropathy. Chronic administration of these direct activators elevates the phosphorylation of AMPK in the kidney, without impacting blood glucose levels, and reduces the progression of proteinuria to a greater degree than the current standard of care, angiotensin-converting enzyme inhibitor ramipril. Further analyses of urine biomarkers and kidney tissue gene expression reveal AMPK activation leads to the modulation of multiple pathways implicated in kidney injury, including cellular hypertrophy, fibrosis, and oxidative stress. These results support the need for further investigation into the potential beneficial effects of AMPK activation in kidney disease.
Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Aminopiridinas/farmacologia , Nefropatias Diabéticas/tratamento farmacológico , Ativadores de Enzimas/farmacologia , Indóis/farmacologia , Rim/efeitos dos fármacos , Aminopiridinas/uso terapêutico , Animais , Tamanho Celular , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Ativação Enzimática , Fibrose , Humanos , Indóis/uso terapêutico , Isoenzimas/metabolismo , Rim/metabolismo , Rim/patologia , Testes de Função Renal , Macaca fascicularis , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Fosforilação , Proteinúria/tratamento farmacológico , Proteinúria/metabolismo , Ratos , Especificidade da EspécieRESUMO
Branched chain amino acid (BCAA) catabolic impairments have been implicated in several diseases. Branched chain ketoacid dehydrogenase (BCKDH) controls the rate limiting step in BCAA degradation, the activity of which is inhibited by BCKDH kinase (BDK)-mediated phosphorylation. Screening efforts to discover BDK inhibitors led to identification of thiophene PF-07208254, which improved cardiometabolic endpoints in mice. Structure-activity relationship studies led to identification of a thiazole series of BDK inhibitors; however, these inhibitors did not improve metabolism in mice upon chronic administration. While the thiophenes demonstrated sustained branched chain ketoacid (BCKA) lowering and reduced BDK protein levels, the thiazoles increased BCKAs and BDK protein levels. Thiazoles increased BDK proximity to BCKDH-E2, whereas thiophenes reduced BDK proximity to BCKDH-E2, which may promote BDK degradation. Thus, we describe two BDK inhibitor series that possess differing attributes regarding BDK degradation or stabilization and provide a mechanistic understanding of the desirable features of an effective BDK inhibitor.
Assuntos
Aminoácidos de Cadeia Ramificada , Tiofenos , Camundongos , Animais , Aminoácidos de Cadeia Ramificada/metabolismo , Fosforilação , Tiofenos/farmacologia , Oxirredutases/metabolismoRESUMO
OBJECTIVE: Branched chain amino acid (BCAA) catabolic defects are implicated to be causal determinates of multiple diseases. This work aimed to better understand how enhancing BCAA catabolism affected metabolic homeostasis as well as the mechanisms underlying these improvements. METHODS: The rate limiting step of BCAA catabolism is the irreversible decarboxylation by the branched chain ketoacid dehydrogenase (BCKDH) enzyme complex, which is post-translationally controlled through phosphorylation by BCKDH kinase (BDK). This study utilized BT2, a small molecule allosteric inhibitor of BDK, in multiple mouse models of metabolic dysfunction and NAFLD including the high fat diet (HFD) model with acute and chronic treatment paradigms, the choline deficient and methionine minimal high fat diet (CDAHFD) model, and the low-density lipoprotein receptor null mouse model (Ldlr-/-). shRNA was additionally used to knock down BDK in liver to elucidate liver-specific effects of BDK inhibition in HFD-fed mice. RESULTS: A rapid improvement in insulin sensitivity was observed in HFD-fed and lean mice after BT2 treatment. Resistance to steatosis was assessed in HFD-fed mice, CDAHFD-fed mice, and Ldlr-/- mice. In all cases, BT2 treatment reduced steatosis and/or inflammation. Fasting and refeeding demonstrated a lack of response to feeding-induced changes in plasma metabolites including insulin and beta-hydroxybutyrate and hepatic gene changes in BT2-treated mice. Mechanistically, BT2 treatment acutely altered the expression of genes involved in fatty acid oxidation and lipogenesis in liver, and upstream regulator analysis suggested that BT2 treatment activated PPARα. However, BT2 did not directly activate PPARα in vitro. Conversely, shRNA-AAV-mediated knockdown of BDK specifically in liver in vivo did not demonstrate any effects on glycemia, steatosis, or PPARα-mediated gene expression in mice. CONCLUSIONS: These data suggest that BT2 treatment acutely improves metabolism and liver steatosis in multiple mouse models. While many molecular changes occur in liver in BT2-treated mice, these changes were not observed in mice with AAV-mediated shRNA knockdown of BDK. All together, these data suggest that systemic BDK inhibition is required to improve metabolism and steatosis by prolonging a fasting signature in a paracrine manner. Therefore, BCAA may act as a "fed signal" to promote nutrient storage and reduced systemic BCAA levels as shown in this study via BDK inhibition may act as a "fasting signal" to prolong the catabolic state.
Assuntos
Fígado Gorduroso , PPAR alfa , Animais , Camundongos , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Jejum , Camundongos Knockout , RNA Interferente PequenoRESUMO
Myeloperoxidase (MPO) is a highly abundant protein within the neutrophil that is associated with lipoprotein oxidation, and increased plasma MPO levels are correlated with poor prognosis after myocardial infarct. Thus, MPO inhibitors have been developed for the treatment of heart failure and acute coronary syndrome in humans. 2-(6-(5-Chloro-2-methoxyphenyl)-4-oxo-2-thioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamide PF-06282999 is a recently described selective small molecule mechanism-based inactivator of MPO. Here, utilizing PF-06282999, we investigated the role of MPO to regulate atherosclerotic lesion formation and composition in the Ldlr-/- mouse model of atherosclerosis. Though MPO inhibition did not affect lesion area in Ldlr-/- mice fed a Western diet, reduced necrotic core area was observed in aortic root sections after MPO inhibitor treatment. MPO inhibition did not alter macrophage content in and leukocyte homing to atherosclerotic plaques. To assess non-invasive monitoring of plaque inflammation, [18F]-Fluoro-deoxy-glucose (FDG) was administered to Ldlr-/- mice with established atherosclerosis that had been treated with clinically relevant doses of PF-06282999, and reduced FDG signal was observed in animals treated with a dose of PF-06282999 that corresponded with reduced necrotic core area. These data suggest that MPO inhibition does not alter atherosclerotic plaque area or leukocyte homing, but rather alters the inflammatory tone of atherosclerotic lesions; thus, MPO inhibition could have utility to promote atherosclerotic lesion stabilization and prevent atherosclerotic plaque rupture.
Assuntos
Acetamidas/farmacologia , Aterosclerose/tratamento farmacológico , Macrófagos/enzimologia , Peroxidase/antagonistas & inibidores , Placa Aterosclerótica/tratamento farmacológico , Pirimidinonas/farmacologia , Animais , Aterosclerose/enzimologia , Aterosclerose/genética , Aterosclerose/patologia , Macrófagos/patologia , Camundongos , Camundongos Knockout , Peroxidase/genética , Peroxidase/metabolismo , Placa Aterosclerótica/enzimologia , Placa Aterosclerótica/genética , Placa Aterosclerótica/patologia , Receptores de LDL/deficiência , Receptores de LDL/metabolismoRESUMO
Dysregulation of hepatic lipid and cholesterol metabolism is a significant contributor to cardiometabolic health, resulting in excessive liver lipid accumulation and ultimately non-alcoholic steatohepatitis (NASH). Therapeutic activators of the AMP-Activated Protein Kinase (AMPK) have been proposed as a treatment for metabolic diseases; we show that the AMPK ß1-biased activator PF-06409577 is capable of lowering hepatic and systemic lipid and cholesterol levels in both rodent and monkey preclinical models. PF-06409577 is able to inhibit de novo lipid and cholesterol synthesis pathways, and causes a reduction in hepatic lipids and mRNA expression of markers of hepatic fibrosis. These effects require AMPK activity in the hepatocytes. Treatment of hyperlipidemic rats or cynomolgus monkeys with PF-06409577 for 6weeks resulted in a reduction in circulating cholesterol. Together these data suggest that activation of AMPK ß1 complexes with PF-06409577 is capable of impacting multiple facets of liver disease and represents a promising strategy for the treatment of NAFLD and NASH in humans.