Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Annu Rev Microbiol ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39018459

RESUMO

Peptidoglycan (PGN) and associated surface structures such as secondary polymers and capsules have a central role in the physiology of bacteria. The exoskeletal PGN heteropolymer is the major determinant of cell shape and allows bacteria to withstand cytoplasmic turgor pressure. Thus, its assembly, expansion, and remodeling during cell growth and division need to be highly regulated to avoid compromising cell survival. Similarly, regulation of the assembly impacts bacterial cell shape; distinct shapes enhance fitness in different ecological niches, such as the host. Because bacterial cell wall components, in particular PGN, are exposed to the environment and unique to bacteria, these have been coopted during evolution by eukaryotes to detect bacteria. Furthermore, the essential role of the cell wall in bacterial survival has made PGN an important signaling molecule in the dialog between host and microbes and a target of many host responses. Millions of years of coevolution have resulted in a pivotal role for PGN fragments in shaping host physiology and in establishing a long-lasting symbiosis between microbes and the host. Thus, perturbations of this dialog can lead to pathologies such as chronic inflammatory diseases. Similarly, pathogens have devised sophisticated strategies to manipulate the system to enhance their survival and growth.

2.
J Immunol ; 210(4): 459-474, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36602965

RESUMO

Leptospira interrogans are bacteria that can infect all vertebrates and are responsible for leptospirosis, a neglected zoonosis. Some hosts, such as humans, are susceptible to the disease, whereas mice are resistant and get chronically colonized. Although leptospires escape recognition by some immune receptors, they activate the NOD-like receptor pyrin 3-inflammasome and trigger IL-1ß secretion. Classically, IL-1ß secretion is associated with lytic inflammatory cell death called pyroptosis, resulting from cytosolic LPS binding to inflammatory caspases, such as caspase 11. Interestingly, we showed that L. interrogans and Leptospira biflexa do not trigger cell death in either murine, human, hamster, or bovine macrophages, escaping both pyroptosis and apoptosis. We showed, in murine cells, that the mild IL-1ß secretion induced by leptospires occurred through nonlytic caspase 8-dependent gasdermin D pore formation and not through activation of caspase 11/noncanonical inflammasome. Strikingly, we demonstrated a potent antagonistic effect of pathogenic L. interrogans and their atypical LPS on spontaneous and Escherichia coli LPS-induced cell death. Indeed, LPS of L. interrogans efficiently prevents caspase 11 dimerization and subsequent massive gasdermin D cleavage. Finally, we showed that pyroptosis escape by leptospires prevents massive IL-1ß release, and we consistently found no major role of IL-1R in controlling experimental leptospirosis in vivo. Overall, to our knowledge, our findings described a novel mechanism by which leptospires dampen inflammation, thus potentially contributing to their stealthiness.


Assuntos
Leptospira interrogans , Leptospirose , Animais , Bovinos , Cricetinae , Humanos , Camundongos , Caspases/metabolismo , Gasderminas , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Leptospira interrogans/metabolismo , Leptospirose/metabolismo , Leptospirose/microbiologia , Lipopolissacarídeos , Macrófagos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose , Morte Celular
3.
Brain Behav Immun ; 123: 799-812, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39442638

RESUMO

Peptidoglycan (PGN) is a large complex polymer critical to structure and function of all bacterial species. Intact PGN and its fragments are inflammatory, contributing to infectious and autoimmune disease. Recent studies show that PGN physiologically contributes to immune setpoints, and importantly also to mouse brain development and behavior. However, for the human brain, it remains unknown whether PGN and its fragments differentially gain access to distinct brain regions, which cell types accumulate it, and whether PGN brain load varies with age. Therefore, we investigated human postmortem brain samples of donors with an extensive age range, from newborns to nonagenarians. We examined two monoclonal antibodies against PGN which were validated using dot blot analysis, competition assays and immunofluorescence experiments on bacteria sacculi, which jointly showed specific detection of Gram-positive PGN. As positive reference tissue, brain tissue from sepsis patients, and human liver were used, both showing the expected high PGN levels. In adult brain tissue of different age (34- to 94-year-old) and sex, we detected PGN signals in seven different brain regions, with highest loads in the occipital cortex, hippocampal formation, frontal cortex, the periventricular region and the olfactory bulb. Age-dependent increase of signals was not evident by microscopic observations and only weak correlation was found by statistical analysis in this cohort. PGN was found intracellularly in the cytoplasm surrounding the cell nucleus in astrocytes, oligodendrocytes, neurons, and endothelial cells, but not in macrophages like microglia. PGN was absent in brain tissues of three human newborns (stillbirth to four weeks old). For comparison, three brain regions from non-human primates of varying age (newborn to 21 years) were immunohistochemically stained. The highest PGN-load was observed in brain tissue from 18- to 21-year-old macaques. This first systematic evaluation of PGN in human postmortem brain suggests that PGN accumulates during lifetime until it reaches a plateau by homeostatic turnover and highlights the ubiquitous presence of PGN in human brain tissues, and their ability to participate in physiological as well as pathological processes throughout life.

4.
Immunity ; 40(3): 436-50, 2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-24656047

RESUMO

Standardization of immunophenotyping procedures has become a high priority. We have developed a suite of whole-blood, syringe-based assay systems that can be used to reproducibly assess induced innate or adaptive immune responses. By eliminating preanalytical errors associated with immune monitoring, we have defined the protein signatures induced by (1) medically relevant bacteria, fungi, and viruses; (2) agonists specific for defined host sensors; (3) clinically employed cytokines; and (4) activators of T cell immunity. Our results provide an initial assessment of healthy donor reference values for induced cytokines and chemokines and we report the failure to release interleukin-1α as a common immunological phenotype. The observed naturally occurring variation of the immune response may help to explain differential susceptibility to disease or response to therapeutic intervention. The implementation of a general solution for assessment of functional immune responses will help support harmonization of clinical studies and data sharing.


Assuntos
Imunidade Adaptativa/imunologia , Imunidade Inata/imunologia , Monitorização Imunológica/métodos , Antígenos/imunologia , Citocinas/sangue , Citocinas/metabolismo , Voluntários Saudáveis , Humanos , Mediadores da Inflamação/sangue , Mediadores da Inflamação/metabolismo , Monitorização Imunológica/normas , Valores de Referência , Reprodutibilidade dos Testes
5.
Proc Natl Acad Sci U S A ; 117(49): 31398-31409, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33229580

RESUMO

Toxin-antitoxin systems are found in many bacterial chromosomes and plasmids with roles ranging from plasmid stabilization to biofilm formation and persistence. In these systems, the expression/activity of the toxin is counteracted by an antitoxin, which, in type I systems, is an antisense RNA. While the regulatory mechanisms of these systems are mostly well defined, the toxins' biological activity and expression conditions are less understood. Here, these questions were investigated for a type I toxin-antitoxin system (AapA1-IsoA1) expressed from the chromosome of the human pathogen Helicobacter pylori We show that expression of the AapA1 toxin in H. pylori causes growth arrest associated with rapid morphological transformation from spiral-shaped bacteria to round coccoid cells. Coccoids are observed in patients and during in vitro growth as a response to different stress conditions. The AapA1 toxin, first molecular effector of coccoids to be identified, targets H. pylori inner membrane without disrupting it, as visualized by cryoelectron microscopy. The peptidoglycan composition of coccoids is modified with respect to spiral bacteria. No major changes in membrane potential or adenosine 5'-triphosphate (ATP) concentration result from AapA1 expression, suggesting coccoid viability. Single-cell live microscopy tracking the shape conversion suggests a possible association of this process with cell elongation/division interference. Oxidative stress induces coccoid formation and is associated with repression of the antitoxin promoter and enhanced processing of its transcript, leading to an imbalance in favor of AapA1 toxin expression. Our data support the hypothesis of viable coccoids with characteristics of dormant bacteria that might be important in H. pylori infections refractory to treatment.


Assuntos
Helicobacter pylori/citologia , Helicobacter pylori/efeitos dos fármacos , Peptídeos/farmacologia , Sistemas Toxina-Antitoxina , Trifosfato de Adenosina/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Helicobacter pylori/ultraestrutura , Peróxido de Hidrogênio/toxicidade , Espaço Intracelular/metabolismo , Cinética , Potenciais da Membrana/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Peptidoglicano/metabolismo
6.
Mol Microbiol ; 115(3): 356-365, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32979868

RESUMO

Lipoproteins are characterized by a fatty acid moiety at their amino-terminus through which they are anchored into membranes. They fulfill a variety of essential functions in bacterial cells, such as cell wall maintenance, virulence, efflux of toxic elements including antibiotics, and uptake of nutrients. The posttranslational modification process of lipoproteins involves the sequential action of integral membrane enzymes and phospholipids as acyl donors. In recent years, the structures of the lipoprotein modification enzymes have been solved by X-ray crystallography leading to a greater insight into their function and the molecular mechanism of the reactions. The catalytic domains of the enzymes are exposed to the periplasm or external milieu and are readily accessible to small molecules. Since the lipoprotein modification pathway is essential in proteobacteria, it is a potential target for the development of novel antibiotics. In this review, we discuss recent literature on the structural characterization of the enzymes, and the in vitro activity assays compatible with high-throughput screening for inhibitors, with perspectives on the development of new antimicrobial agents.


Assuntos
Bactérias/enzimologia , Bactérias/metabolismo , Domínio Catalítico , Enzimas/química , Enzimas/metabolismo , Lipoproteínas/metabolismo , Processamento de Proteína Pós-Traducional , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Inibidores Enzimáticos/farmacologia , Lipoproteínas/química , Sistemas de Translocação de Proteínas
8.
PLoS Pathog ; 16(8): e1008639, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32790743

RESUMO

Leptospirosis is a worldwide re-emerging zoonosis caused by pathogenic Leptospira spp. All vertebrate species can be infected; humans are sensitive hosts whereas other species, such as rodents, may become long-term renal carrier reservoirs. Upon infection, innate immune responses are initiated by recognition of Microbial Associated Molecular Patterns (MAMPs) by Pattern Recognition Receptors (PRRs). Among MAMPs, the lipopolysaccharide (LPS) is recognized by the Toll-Like-Receptor 4 (TLR4) and activates both the MyD88-dependent pathway at the plasma membrane and the TRIF-dependent pathway after TLR4 internalization. We previously showed that leptospiral LPS is not recognized by the human-TLR4, whereas it signals through mouse-TLR4 (mTLR4), which mediates mouse resistance to acute leptospirosis. However, although resistant, mice are known to be chronically infected by leptospires. Interestingly, the leptospiral LPS has low endotoxicity in mouse cells and is an agonist of TLR2, the sensor for bacterial lipoproteins. Here, we investigated the signaling properties of the leptospiral LPS in mouse macrophages. Using confocal microscopy and flow cytometry, we showed that the LPS of L. interrogans did not induce internalization of mTLR4, unlike the LPS of Escherichia coli. Consequently, the LPS failed to induce the production of the TRIF-dependent nitric oxide and RANTES, both important antimicrobial responses. Using shorter LPS and LPS devoid of TLR2 activity, we further found this mTLR4-TRIF escape to be dependent on both the co-purifying lipoproteins and the full-length O antigen. Furthermore, our data suggest that the O antigen could alter the binding of the leptospiral LPS to the co-receptor CD14 that is essential for TLR4-TRIF activation. Overall, we describe here a novel leptospiral immune escape mechanism from mouse macrophages and hypothesize that the LPS altered signaling could contribute to the stealthiness and chronicity of the leptospires in mice.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Leptospira/imunologia , Leptospirose/imunologia , Lipopolissacarídeos/metabolismo , Lipoproteínas/metabolismo , Antígenos O/metabolismo , Receptor 4 Toll-Like/fisiologia , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Citocinas/metabolismo , Feminino , Leptospirose/metabolismo , Leptospirose/microbiologia , Leptospirose/patologia , Receptores de Lipopolissacarídeos/genética , Receptores de Lipopolissacarídeos/metabolismo , Lipoproteínas/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide/fisiologia , Antígenos O/genética , Transdução de Sinais , Receptor 2 Toll-Like/fisiologia
9.
Nat Immunol ; 11(1): 55-62, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19898471

RESUMO

Autophagy is emerging as a crucial defense mechanism against bacteria, but the host intracellular sensors responsible for inducing autophagy in response to bacterial infection remain unknown. Here we demonstrated that the intracellular sensors Nod1 and Nod2 are critical for the autophagic response to invasive bacteria. By a mechanism independent of the adaptor RIP2 and transcription factor NF-kappaB, Nod1 and Nod2 recruited the autophagy protein ATG16L1 to the plasma membrane at the bacterial entry site. In cells homozygous for the Crohn's disease-associated NOD2 frameshift mutation, mutant Nod2 failed to recruit ATG16L1 to the plasma membrane and wrapping of invading bacteria by autophagosomes was impaired. Our results link bacterial sensing by Nod proteins to the induction of autophagy and provide a functional link between Nod2 and ATG16L1, which are encoded by two of the most important genes associated with Crohn's disease.


Assuntos
Autofagia , Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Animais , Proteínas Relacionadas à Autofagia , Bactérias/metabolismo , Proteínas de Transporte/genética , Linhagem Celular , Membrana Celular/microbiologia , Membrana Celular/ultraestrutura , Células Cultivadas , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Immunoblotting , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Knockout , Microscopia Confocal , Microscopia Eletrônica , Microscopia de Fluorescência , Mutação , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD2/genética , Transfecção
10.
J Biol Chem ; 295(49): 16785-16796, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-32978253

RESUMO

Clostridium difficile is an anaerobic and spore-forming bacterium responsible for 15-25% of postantibiotic diarrhea and 95% of pseudomembranous colitis. Peptidoglycan is a crucial element of the bacterial cell wall that is exposed to the host, making it an important target for the innate immune system. The C. difficile peptidoglycan is largely N-deacetylated on its glucosamine (93% of muropeptides) through the activity of enzymes known as N-deacetylases, and this N-deacetylation modulates host-pathogen interactions, such as resistance to the bacteriolytic activity of lysozyme, virulence, and host innate immune responses. C. difficile genome analysis showed that 12 genes potentially encode N-deacetylases; however, which of these N-deacetylases are involved in peptidoglycan N-deacetylation remains unknown. Here, we report the enzymes responsible for peptidoglycan N-deacetylation and their respective regulation. Through peptidoglycan analysis of several mutants, we found that the N-deacetylases PdaV and PgdA act in synergy. Together they are responsible for the high level of peptidoglycan N-deacetylation in C. difficile and the consequent resistance to lysozyme. We also characterized a third enzyme, PgdB, as a glucosamine N-deacetylase. However, its impact on N-deacetylation and lysozyme resistance is limited, and its physiological role remains to be dissected. Finally, given the influence of peptidoglycan N-deacetylation on host defense against pathogens, we investigated the virulence and colonization ability of the mutants. Unlike what has been shown in other pathogenic bacteria, a lack of N-deacetylation in C. difficile is not linked to a decrease in virulence.


Assuntos
Proteínas de Bactérias/metabolismo , Clostridioides difficile/enzimologia , Interações Hospedeiro-Patógeno/fisiologia , Hidrolases/metabolismo , Peptidoglicano/análise , Acilação , Animais , Proteínas de Bactérias/genética , Parede Celular/metabolismo , Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/genética , Clostridioides difficile/patogenicidade , Infecções por Clostridium/mortalidade , Infecções por Clostridium/patologia , Infecções por Clostridium/veterinária , Cricetinae , Feminino , Glucosamina/metabolismo , Hidrolases/genética , Imunidade Inata , Estimativa de Kaplan-Meier , Testes de Sensibilidade Microbiana , Muramidase/metabolismo , Muramidase/farmacologia , Mutagênese , Peptidoglicano/metabolismo , Virulência/genética
11.
PLoS Pathog ; 15(5): e1007811, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31107928

RESUMO

Leptospira interrogans are pathogenic spirochetes responsible for leptospirosis, a worldwide reemerging zoonosis. Many Leptospira serovars have been described, and prophylaxis using inactivated bacteria provides only short-term serovar-specific protection. Therefore, alternative approaches to limit severe leptospirosis in humans and morbidity in cattle would be welcome. Innate immune cells, including macrophages, play a key role in fighting infection and pathogen clearance. Recently, it has been shown that functional reprograming of innate immune cells through the activation of pattern recognition receptors leads to enhanced nonspecific antimicrobial responses upon a subsequent microbial encounter. This mechanism is known as trained immunity or innate immune memory. We have previously shown that oral treatment with Lactobacillus plantarum confers a beneficial effect against acute leptospirosis. Here, using a macrophage depletion protocol and live imaging in mice, we established the role of peritoneal macrophages in limiting the initial dissemination of leptospires. We further showed that intraperitoneal priming of mice with CL429, a TLR2 and NOD2 agonist known to mimic the modulatory effect of Lactobacillus, alleviated acute leptospiral infection. The CL429 treatment was characterized as a training effect since i.) it was linked to peritoneal macrophages that produced ex vivo more pro-inflammatory cytokines and chemokines against 3 different pathogenic serovars of Leptospira, independently of the presence of B and T cells, ii.) it had systemic effects on splenic cells and bone marrow derived macrophages, and iii.) it was sustained for 3 months. Importantly, trained macrophages produced more nitric oxide, a potent antimicrobial compound, which has not been previously linked to trained immunity. Accordingly, trained macrophages better restrict leptospiral survival. Finally, we could use CL429 to train ex vivo human monocytes that produced more cytokines upon leptospiral stimulation. In conclusion, host-directed treatment using a TLR2/NOD2 agonist could be envisioned as a novel prophylactic strategy against acute leptospirosis.


Assuntos
Memória Imunológica/imunologia , Leptospira interrogans/imunologia , Leptospirose/prevenção & controle , Macrófagos Peritoneais/imunologia , Proteína Adaptadora de Sinalização NOD2/agonistas , Bibliotecas de Moléculas Pequenas/farmacologia , Receptor 2 Toll-Like/agonistas , Animais , Células Cultivadas , Citocinas/metabolismo , Feminino , Humanos , Memória Imunológica/efeitos dos fármacos , Leptospirose/imunologia , Leptospirose/metabolismo , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais
12.
Immunity ; 37(6): 1076-90, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23219392

RESUMO

Ly6C(hi) monocytes seed the healthy intestinal lamina propria to give rise to resident CX(3)CR1(+) macrophages that contribute to the maintenance of gut homeostasis. Here we report on two alternative monocyte fates in the inflamed colon. We showed that CCR2 expression is essential to the recruitment of Ly6C(hi) monocytes to the inflamed gut to become the dominant mononuclear cell type in the lamina propria during settings of acute colitis. In the inflammatory microenvironment, monocytes upregulated TLR2 and NOD2, rendering them responsive to bacterial products to become proinflammatory effector cells. Ablation of Ly6C(hi) monocytes ameliorated acute gut inflammation. With time, monocytes differentiated into migratory antigen-presenting cells capable of priming naive T cells, thus acquiring hallmarks reminiscent of dendritic cells. Collectively, our results highlight cellular dynamics in the inflamed colon and the plasticity of Ly6C(hi) monocytes, marking them as potential targets for inflammatory bowel disease (IBD) therapy.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Antígenos Ly/metabolismo , Movimento Celular/imunologia , Colite/imunologia , Monócitos/imunologia , Animais , Células Apresentadoras de Antígenos/metabolismo , Antígenos Ly/imunologia , Receptor 1 de Quimiocina CX3C , Colite/metabolismo , Colite/patologia , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Imunofenotipagem , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Transgênicos , Monócitos/metabolismo , Proteína Adaptadora de Sinalização NOD2/imunologia , Proteína Adaptadora de Sinalização NOD2/metabolismo , Receptores CCR2/imunologia , Receptores CCR2/metabolismo , Receptores de Quimiocinas/metabolismo , Linfócitos T/imunologia , Receptor 2 Toll-Like/imunologia , Receptor 2 Toll-Like/metabolismo
13.
PLoS Pathog ; 13(12): e1006725, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29211798

RESUMO

Leptospirosis is a widespread zoonosis, potentially severe in humans, caused by spirochetal bacteria, Leptospira interrogans (L. interrogans). Host defense mechanisms involved in leptospirosis are poorly understood. Recognition of lipopolysaccharide (LPS) and lipoproteins by Toll-Like Receptors (TLR)4 and TLR2 is crucial for clearance of leptospires in mice, yet the role of Nucleotide Oligomerization Domain (NOD)-like receptors (NOD)1 and NOD2, recognizing peptidoglycan (PG) fragments has not previously been examined. Here, we show that pathogenic leptospires escape from NOD1 and NOD2 recognition both in vitro and in vivo, in mice. We found that leptospiral PG is resistant to digestion by certain hydrolases and that a conserved outer membrane lipoprotein of unknown function, LipL21, specific for pathogenic leptospires, is tightly bound to the PG. Leptospiral PG prepared from a mutant not expressing LipL21 (lipl21-) was more readily digested than the parental or complemented strains. Muropeptides released from the PG of the lipl21- mutant, or prepared using a procedure to eliminate the LipL21 protein from the PG of the parental strain, were recognized in vitro by the human NOD1 (hNOD1) and NOD2 (hNOD2) receptors, suggesting that LipL21 protects PG from degradation into muropeptides. LipL21 expressed in E. coli also resulted in impaired PG digestion and NOD signaling. We found that murine NOD1 (mNOD1) did not recognize PG of L. interrogans. This result was confirmed by mass spectrometry showing that leptospiral PG was primarily composed of MurTriDAP, the natural agonist of hNOD1, and contained only trace amounts of the tetra muropeptide, the mNOD1 agonist. Finally, in transgenic mice expressing human NOD1 and deficient for the murine NOD1, we showed enhanced clearance of a lipl21- mutant compared to the complemented strain, or to what was observed in NOD1KO mice, suggesting that LipL21 facilitates escape from immune surveillance in humans. These novel mechanisms allowing L. interrogans to escape recognition by the NOD receptors may be important in circumventing innate host responses.


Assuntos
Antígenos de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Evasão da Resposta Imune , Leptospira interrogans/imunologia , Leptospira interrogans/patogenicidade , Lipoproteínas/metabolismo , Proteína Adaptadora de Sinalização NOD1/imunologia , Proteína Adaptadora de Sinalização NOD2/imunologia , Peptidoglicano/metabolismo , Animais , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/imunologia , Feminino , Humanos , Evasão da Resposta Imune/genética , Imunidade Inata , Leptospira/imunologia , Leptospira interrogans/genética , Leptospirose/genética , Leptospirose/imunologia , Leptospirose/microbiologia , Lipoproteínas/genética , Lipoproteínas/imunologia , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mutação , Proteína Adaptadora de Sinalização NOD1/deficiência , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD2/deficiência , Proteína Adaptadora de Sinalização NOD2/genética , Peptidoglicano/química , Peptidoglicano/imunologia , Ligação Proteica , Transdução de Sinais , Especificidade da Espécie , Virulência/genética , Virulência/imunologia
14.
PLoS Genet ; 11(7): e1005338, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26162030

RESUMO

Respiratory infectious diseases are the third cause of worldwide death. The nasopharynx is the portal of entry and the ecological niche of many microorganisms, of which some are pathogenic to humans, such as Neisseria meningitidis and Moraxella catarrhalis. These microbes possess several surface structures that interact with the actors of the innate immune system. In our attempt to understand the past evolution of these bacteria and their adaption to the nasopharynx, we first studied differences in cell wall structure, one of the strongest immune-modulators. We were able to show that a modification of peptidoglycan (PG) composition (increased proportion of pentapeptides) and a cell shape change from rod to cocci had been selected for along the past evolution of N. meningitidis. Using genomic comparison across species, we correlated the emergence of the new cell shape (cocci) with the deletion, from the genome of N. meningitidis ancestor, of only one gene: yacF. Moreover, the reconstruction of this genetic deletion in a bacterium harboring the ancestral version of the locus together with the analysis of the PG structure, suggest that this gene is coordinating the transition from cell elongation to cell division. Accompanying the loss of yacF, the elongation machinery was also lost by several of the descendants leading to the change in the PG structure observed in N. meningitidis. Finally, the same evolution was observed for the ancestor of M. catarrhalis. This suggests a strong selection of these genetic events during the colonization of the nasopharynx. This selection may have been forced by the requirement of evolving permissive interaction with the immune system, the need to reduce the cellular surface exposed to immune attacks without reducing the intracellular storage capacity, or the necessity to better compete for adhesion to target cells.


Assuntos
Adaptação Fisiológica/genética , Estruturas da Membrana Celular/imunologia , Moraxella catarrhalis/genética , Neisseria meningitidis/genética , Mucosa Respiratória/microbiologia , Evolução Biológica , Proteínas de Ciclo Celular/genética , Humanos , Moraxella catarrhalis/imunologia , Moraxella catarrhalis/fisiologia , Nasofaringe/microbiologia , Neisseria meningitidis/imunologia , Neisseria meningitidis/fisiologia , Peptidoglicano/química , Peptidoglicano/imunologia , Mucosa Respiratória/imunologia
15.
J Am Chem Soc ; 139(15): 5330-5337, 2017 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-28333455

RESUMO

The full extent of proline (Pro) hydroxylation has yet to be established, as it is largely unexplored in bacteria. We describe here a so far unknown Pro hydroxylation activity which occurs in active sites of polysaccharide deacetylases (PDAs) from bacterial pathogens, modifying the protein backbone at the Cα atom of a Pro residue to produce 2-hydroxyproline (2-Hyp). This process modifies with high specificity a conserved Pro, shares with the deacetylation reaction the same active site and one catalytic residue, and utilizes molecular oxygen as source for the hydroxyl group oxygen of 2-Hyp. By providing additional hydrogen-bonding capacity, the Pro→2-Hyp conversion alters the active site and enhances significantly deacetylase activity, probably by creating a more favorable environment for transition-state stabilization. Our results classify this process as an active-site "maturation", which is highly atypical in being a protein backbone-modifying activity, rather than a side-chain-modifying one.


Assuntos
Amidoidrolases/metabolismo , Bacillus anthracis/enzimologia , Bacillus cereus/enzimologia , Carbono/metabolismo , Prolina/metabolismo , Amidoidrolases/química , Amidoidrolases/isolamento & purificação , Sítios de Ligação , Carbono/química , Cristalografia por Raios X , Ligação de Hidrogênio , Hidroxilação , Modelos Moleculares , Prolina/química
16.
J Infect Dis ; 209(7): 1045-54, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24265438

RESUMO

Mycobacteria produce an unusual, glycolylated form of muramyl dipeptide (MDP) that is more potent and efficacious at inducing NOD2-mediated host responses. We tested the importance of this modified form of MDP in Mycobacterium tuberculosis by disrupting the gene, namH, responsible for this modification. In vitro, the namH mutant did not produce N-glycolylated muropeptides, but there was no alteration in colony morphology, growth kinetics, cellular morphology, or mycolic acid profile. Ex vivo, the namH mutant survived and replicated normally in murine and human macrophages, yet induced diminished production of tumor necrosis factor α. In vivo, namH disruption did not affect the bacterial burden during infection of C57BL/6 mice or cellular recruitment to the lungs but modestly prolonged survival after infection in Rag1(-/-) mice. These results indicate that the modified MDP is an important contributor to the unusual immunogenicity of mycobacteria but has a limited role in the pathogenesis of M. tuberculosis infection.


Assuntos
Acetilmuramil-Alanil-Isoglutamina/imunologia , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/patogenicidade , Peptidoglicano/imunologia , Acetilmuramil-Alanil-Isoglutamina/metabolismo , Animais , Carga Bacteriana , Células Cultivadas , Modelos Animais de Doenças , Deleção de Genes , Humanos , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/enzimologia , Peptidoglicano/química , Processamento de Proteína Pós-Traducional , Análise de Sobrevida , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/microbiologia , Virulência
17.
J Infect Dis ; 210(8): 1286-95, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24755437

RESUMO

Adhesion of Helicobacter pylori to the gastric mucosa is a necessary prerequisite for the pathogenesis of H. pylori-related diseases. In this study, we investigated the GalNAcß1-4GlcNAc motif (also known as N,N'-diacetyllactosediamine [lacdiNAc]) carried by MUC5AC gastric mucins as the target for bacterial binding to the human gastric mucosa. The expression of LacdiNAc carried by gastric mucins was correlated with H. pylori localization, and all strains tested adhered significantly to this motif. Proteomic analysis and mutant construction allowed the identification of a yet uncharacterized bacterial adhesin, LabA, which specifically recognizes lacdiNAc. These findings unravel a target of adhesion for H. pylori in addition to moieties recognized by the well-characterized adhesins BabA and SabA. Localization of the LabA target, restricted to the gastric mucosa, suggests a plausible explanation for the tissue tropism of these bacteria. These results pave the way for the development of alternative strategies against H. pylori infection, using adherence inhibitors.


Assuntos
Adesinas Bacterianas/metabolismo , Aderência Bacteriana/fisiologia , Mucosa Gástrica/microbiologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Helicobacter pylori/fisiologia , Adesinas Bacterianas/genética , Sequência de Aminoácidos , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Ligação Proteica , Ratos , Ratos Sprague-Dawley
18.
J Bacteriol ; 196(21): 3756-67, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25157076

RESUMO

Listeria monocytogenes is a Gram-positive facultative intracellular pathogen that is highly resistant to lysozyme, a ubiquitous enzyme of the innate immune system that degrades cell wall peptidoglycan. Two peptidoglycan-modifying enzymes, PgdA and OatA, confer lysozyme resistance on L. monocytogenes; however, these enzymes are also conserved among lysozyme-sensitive nonpathogens. We sought to identify additional factors responsible for lysozyme resistance in L. monocytogenes. A forward genetic screen for lysozyme-sensitive mutants led to the identification of 174 transposon insertion mutations that mapped to 13 individual genes. Four mutants were killed exclusively by lysozyme and not other cell wall-targeting molecules, including the peptidoglycan deacetylase encoded by pgdA, the putative carboxypeptidase encoded by pbpX, the orphan response regulator encoded by degU, and the highly abundant noncoding RNA encoded by rli31. Both degU and rli31 mutants had reduced expression of pbpX and pgdA, yet DegU and Rli31 did not regulate each other. Since pbpX and pgdA are also present in lysozyme-sensitive bacteria, this suggested that the acquisition of novel enzymes was not responsible for lysozyme resistance, but rather, the regulation of conserved enzymes by DegU and Rli31 conferred high lysozyme resistance. Each lysozyme-sensitive mutant exhibited attenuated virulence in mice, and a time course of infection revealed that the most lysozyme-sensitive strain was killed within 30 min of intravenous infection, a phenotype that was recapitulated in purified blood. Collectively, these data indicate that the genes required for lysozyme resistance are highly upregulated determinants of L. monocytogenes pathogenesis that are required for avoiding the enzymatic activity of lysozyme in the blood.


Assuntos
Parede Celular/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Listeria monocytogenes/enzimologia , Muramidase/metabolismo , Amidoidrolases/metabolismo , Animais , Antibacterianos/farmacologia , Carboxipeptidases/metabolismo , Listeria monocytogenes/citologia , Listeria monocytogenes/metabolismo , Listeria monocytogenes/patogenicidade , Listeriose/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Mutagênese Insercional , Peptidoglicano/metabolismo , Virulência , beta-Lactamas/farmacologia
19.
Infect Immun ; 82(7): 2881-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24778119

RESUMO

Helicobacter pylori infection systematically causes chronic gastric inflammation that can persist asymptomatically or evolve toward more severe gastroduodenal pathologies, such as ulcer, mucosa-associated lymphoid tissue (MALT) lymphoma, and gastric cancer. The cag pathogenicity island (cag PAI) of H. pylori allows translocation of the virulence protein CagA and fragments of peptidoglycan into host cells, thereby inducing production of chemokines, cytokines, and antimicrobial peptides. In order to characterize the inflammatory response to H. pylori, a new experimental protocol for isolating and culturing primary human gastric epithelial cells was established using pieces of stomach from patients who had undergone sleeve gastrectomy. Isolated cells expressed markers indicating that they were mucin-secreting epithelial cells. Challenge of primary epithelial cells with H. pylori B128 underscored early dose-dependent induction of expression of mRNAs of the inflammatory mediators CXCL1 to -3, CXCL5, CXCL8, CCL20, BD2, and tumor necrosis factor alpha (TNF-α). In AGS cells, significant expression of only CXCL5 and CXCL8 was observed following infection, suggesting that these cells were less reactive than primary epithelial cells. Infection of both cellular models with H. pylori B128ΔcagM, a cag PAI mutant, resulted in weak inflammatory-mediator mRNA induction. At 24 h after infection of primary epithelial cells with H. pylori, inflammatory-mediator production was largely due to cag PAI substrate-independent virulence factors. Thus, H. pylori cag PAI substrate appears to be involved in eliciting an epithelial response during the early phases of infection. Afterwards, other virulence factors of the bacterium take over in development of the inflammatory response. Using a relevant cellular model, this study provides new information on the modulation of inflammation during H. pylori infection.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Quimiocinas/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Helicobacter pylori/imunologia , Estômago/citologia , Antígenos de Bactérias/imunologia , Peptídeos Catiônicos Antimicrobianos/genética , Proteínas de Bactérias/imunologia , Células Cultivadas , Quimiocinas/genética , Ilhas Genômicas , Helicobacter pylori/metabolismo , Humanos
20.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 10): 2631-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25286847

RESUMO

Peptidoglycan O-acetylesterase (Ape1), which is required for host survival in Neisseria sp., belongs to the diverse SGNH hydrolase superfamily, which includes important viral and bacterial virulence factors. Here, multi-domain crystal structures of Ape1 with an SGNH catalytic domain and a newly identified putative peptidoglycan-detection module are reported. Enzyme catalysis was performed in Ape1 crystals and key catalytic intermediates along the SGNH esterase hydrolysis reaction pathway were visualized, revealing a substrate-induced productive conformation of the catalytic triad, a mechanistic detail that has not previously been observed. This substrate-induced productive conformation of the catalytic triad shifts the established dogma on these enzymes, generating valuable insight into the structure-based design of drugs targeting the SGNH esterase superfamily.


Assuntos
Esterases/química , Esterases/metabolismo , Neisseria meningitidis/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Modelos Moleculares , Peptidoglicano/metabolismo , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA