Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 198(11): 4513-4523, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28461570

RESUMO

Immunotherapeutic strategies for malignant glioma have to overcome the immunomodulatory activities of M2 monocytes that appear in the circulation and as tumor-associated macrophages (TAMs). M2 cell products contribute to the growth-promoting attributes of the tumor microenvironment (TME) and bias immunity toward type 2, away from the type 1 mechanisms with antitumor properties. To drive type 1 immunity in CNS tissues, we infected GL261 tumor-bearing mice with attenuated rabies virus (RABV). These neurotropic viruses spread to CNS tissues trans-axonally, where they induce a strong type 1 immune response that involves Th1, CD8, and B cell entry across the blood-brain barrier and virus clearance in the absence of overt sequelae. Intranasal infection with attenuated RABV prolonged the survival of mice bearing established GL261 brain tumors. Despite the failure of virus spread to the tumor, infection resulted in significantly enhanced tumor necrosis, extensive CD4 T cell accumulation, and high levels of the proinflammatory factors IFN-γ, TNF-α, and inducible NO synthase in the TME merely 4 d postinfection, before significant virus spread or the appearance of RABV-specific immune mechanisms in CNS tissues. Although the majority of infiltrating CD4 cells appeared functionally inactive, the proinflammatory changes in the TME later resulted in the loss of accumulating M2 and increased M1 TAMs. Mice deficient in the Th1 transcription factor T-bet did not gain any survival advantage from RABV infection, exhibiting only limited tumor necrosis and no change in TME cytokines or TAM phenotype and highlighting the importance of type 1 mechanisms in this process.


Assuntos
Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Encéfalo/virologia , Vírus da Raiva/imunologia , Microambiente Tumoral/imunologia , Animais , Linfócitos B/imunologia , Barreira Hematoencefálica/imunologia , Barreira Hematoencefálica/patologia , Barreira Hematoencefálica/virologia , Encéfalo/imunologia , Neoplasias Encefálicas/virologia , Linfócitos T CD4-Positivos , Citocinas/imunologia , Modelos Animais de Doenças , Feminino , Interferon gama/biossíntese , Interferon gama/imunologia , Camundongos , Necrose/virologia , Óxido Nítrico Sintase Tipo II/biossíntese , Óxido Nítrico Sintase Tipo II/metabolismo , Vírus da Raiva/genética , Vírus da Raiva/fisiologia , Proteínas com Domínio T/deficiência , Proteínas com Domínio T/metabolismo , Células Th2/imunologia , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/imunologia
2.
J Virol ; 89(1): 312-22, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25320312

RESUMO

UNLABELLED: Previous animal model experiments have shown a correlation between interferon gamma (IFN-γ) expression and both survival from infection with attenuated rabies virus (RABV) and reduction of neurological sequelae. Therefore, we hypothesized that rapid production of murine IFN-γ by the rabies virus itself would induce a more robust antiviral response than would occur naturally in mice. To test this hypothesis, we used reverse engineering to clone the mouse IFN-γ gene into a pathogenic rabies virus backbone, SPBN, to produce the recombinant rabies virus designated SPBNγ. Morbidity and mortality were monitored in mice infected intranasally with SPBNγ or SPBN(-) control virus to determine the degree of attenuation caused by the expression of IFN-γ. Incorporation of IFN-γ into the rabies virus genome highly attenuated the virus. SPBNγ has a 50% lethal dose (LD50) more than 100-fold greater than SPBN(-). In vitro and in vivo mouse experiments show that SPBNγ infection enhances the production of type I interferons. Furthermore, knockout mice lacking the ability to signal through the type I interferon receptor (IFNAR(-/-)) cannot control the SPBNγ infection and rapidly die. These data suggest that IFN-γ production has antiviral effects in rabies, largely due to the induction of type I interferons. IMPORTANCE: Survival from rabies is dependent upon the early control of virus replication and spread. Once the virus reaches the central nervous system (CNS), this becomes highly problematic. Studies of CNS immunity to RABV have shown that control of replication begins at the onset of T cell entry and IFN-γ production in the CNS prior to the appearance of virus-neutralizing antibodies. Moreover, antibody-deficient mice are able to control but not clear attenuated RABV from the CNS. We find here that IFN-γ triggers the early production of type I interferons with the expected antiviral effects. We also show that engineering a lethal rabies virus to express IFN-γ directly in the infected tissue reduces rabies virus replication and spread, limiting its pathogenicity in normal and immunocompromised mice. Therefore, vector delivery of IFN-γ to the brain may have the potential to treat individuals who would otherwise succumb to infection with rabies virus.


Assuntos
Interferon Tipo I/metabolismo , Interferon gama/imunologia , Vírus da Raiva/imunologia , Raiva/imunologia , Raiva/patologia , Proteínas Recombinantes/imunologia , Animais , Modelos Animais de Doenças , Feminino , Interferon gama/genética , Camundongos , Camundongos Knockout , Vírus da Raiva/genética , Proteínas Recombinantes/genética , Análise de Sobrevida
3.
J Virol ; 87(3): 1834-41, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23192867

RESUMO

A single intramuscular application of the live but not UV-inactivated recombinant rabies virus (RABV) variant TriGAS in mice induces the robust and sustained production of RABV-neutralizing antibodies that correlate with long-term protection against challenge with an otherwise lethal dose of the wild-type RABV. To obtain insight into the mechanism by which live TriGAS induces long-lasting protective immunity, quantitative PCR (qPCR) analysis of muscle tissue, draining lymph nodes, spleen, spinal cord, and brain at different times after TriGAS inoculation revealed the presence of significant copy numbers of RABV-specific RNA in muscle, lymph node, and to a lesser extent, spleen for several days postinfection. Notably, no significant amounts of RABV RNA were detected in brain or spinal cord at any time after TriGAS inoculation. Differential qPCR analysis revealed that the RABV-specific RNA detected in muscle is predominantly genomic RNA, whereas RABV RNA detected in draining lymph nodes is predominantly mRNA. Comparison of genomic RNA and mRNA obtained from isolated lymph node cells showed the highest mRNA-to-genomic-RNA ratios in B cells and dendritic cells (DCs), suggesting that these cells represent the major cell population that is infected in the lymph node. Since RABV RNA declined to undetectable levels by 14 days postinoculation of TriGAS, we speculate that a transient infection of DCs with TriGAS may be highly immunostimulatory through mechanisms that enhance antigen presentation. Our results support the superior efficacy and safety of TriGAS and advocate for its utility as a vaccine.


Assuntos
Linfonodos/virologia , Vacina Antirrábica/imunologia , Vírus da Raiva/imunologia , Raiva/prevenção & controle , Animais , Linfócitos B/virologia , Encéfalo/patologia , Encéfalo/virologia , Células Dendríticas/virologia , Feminino , Injeções Intramusculares , Linfonodos/imunologia , Linfonodos/patologia , Camundongos , Músculos/patologia , Músculos/virologia , RNA Viral/análise , RNA Viral/genética , Raiva/virologia , Vacina Antirrábica/administração & dosagem , Vírus da Raiva/patogenicidade , Reação em Cadeia da Polimerase em Tempo Real , Medula Espinal/patologia , Medula Espinal/virologia , Baço/patologia , Baço/virologia , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA