Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(13): 7355-7362, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32179689

RESUMO

The honey bee gut microbiota influences bee health and has become an important model to study the ecology and evolution of microbiota-host interactions. Yet, little is known about the phage community associated with the bee gut, despite its potential to modulate bacterial diversity or to govern important symbiotic functions. Here we analyzed two metagenomes derived from virus-like particles, analyzed the prevalence of the identified phages across 73 bacterial metagenomes from individual bees, and tested the host range of isolated phages. Our results show that the honey bee gut virome is composed of at least 118 distinct clusters corresponding to both temperate and lytic phages and representing novel genera with a large repertoire of unknown gene functions. We find that the phage community is prevalent in honey bees across space and time and targets the core members of the bee gut microbiota. The large number and high genetic diversity of the viral clusters seems to mirror the high extent of strain-level diversity in the bee gut microbiota. We isolated eight lytic phages that target the core microbiota member Bifidobacterium asteroides, but that exhibited different host ranges at the strain level, resulting in a nested interaction network of coexisting phages and bacterial strains. Collectively, our results show that the honey bee gut virome consists of a complex and diverse phage community that likely plays an important role in regulating strain-level diversity in the bee gut and that holds promise as an experimental model to study bacteria-phage dynamics in natural microbial communities.


Assuntos
Abelhas/microbiologia , Abelhas/virologia , Animais , Bactérias/genética , Bacteriófagos/genética , Abelhas/genética , Bifidobacterium/isolamento & purificação , Bifidobacterium/virologia , Microbioma Gastrointestinal , Metagenoma , Microbiota , Simbiose/fisiologia
2.
J Nutr ; 150(9): 2364-2374, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32510156

RESUMO

BACKGROUND: The root of Platycodon grandiflorus (PG) has a long-standing tradition in the Asian diet and herbal medicine, because of its anti-inflammatory and antiobesity effects. Changes in the gut microbiota can have dietary effects on host health, which suggests a relation between the 2. OBJECTIVES: The aim of our study was to investigate the relation between PG-mediated suppression of obesity and the composition and functioning of the gut microbiota. METHODS: Six-week-old male C57BL/6J mice were fed either a control diet (CON, 10% kcal from fat), a high-fat diet (HFD, 60% kcal from fat), or a PG-supplemented HFD for 18 wk. PG was administered by oral gavage at 2 g · kg body weight-1 · d-1. Body weight and food intake were monitored. Lipid metabolism, inflammation, and intestinal barrier function were determined. Amplicon sequencing of the bacterial 16S ribosomal RNA gene was used to explore gut microbiota structure, and nontargeted metabolomics analysis was performed to investigate metabolite concentrations in fecal samples. RESULTS: We found that PG significantly ameliorated HFD-induced inflammation, recovered intestinal barrier integrity (reduced permeability by 39% , P = 0.008), reduced fat accumulation by 26% (P = 0.009), and changed the expression of key genes involved in the development of white adipose tissue (P < 0.05) in HFD-fed mice to similar levels in CON mice. Moreover, PG attenuated HFD-induced changes in the gut microbiota; it especially increased Allobaculum (7.3-fold, P = 0.002) relative to HFD, whereas CON was 15.2-fold of HFD (P = 0.002). These changes by PG were associated with an increase in the production of SCFAs (butyrate and propionate, P < 0.001) and other carbohydrate-related metabolites known to have a major role in disease suppression. CONCLUSIONS: Our study demonstrated that PG beneficially changed the gut microbiota and the gut metabolome in HFD-fed mice, and suggests that the antiobesity effects of PG may be mediated via changes in gut microbiota composition and metabolic activity.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Microbioma Gastrointestinal/efeitos dos fármacos , Obesidade/induzido quimicamente , Obesidade/prevenção & controle , Platycodon , Animais , Composição Corporal , DNA Bacteriano , Ácidos Graxos/metabolismo , Fezes/microbiologia , Inflamação , Intestinos/efeitos dos fármacos , Intestinos/fisiologia , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Bacteriano , RNA Ribossômico 16S
3.
J Allergy Clin Immunol ; 144(1): 157-170.e8, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30768991

RESUMO

BACKGROUND: Diet-induced obesity and food allergies increase in tandem, but a potential cause-and-effect relationship between these diseases of affluence remains to be tested. OBJECTIVE: We sought to test the role of high dietary fat intake, diet-induced obesity, and associated changes in gut microbial community structure on food allergy pathogenesis. METHODS: Mice were fed a high-fat diet (HFD) for 12 weeks before food allergen sensitization on an atopic dermatitis-like skin lesion, followed by intragastric allergen challenge to induce experimental food allergy. Germ-free animals were colonized with a signature HFD or lean microbiota for 8 weeks before induction of food allergy. Food-induced allergic responses were quantified by using a clinical allergy score, serum IgE levels, serum mouse mast cell protease 1 concentrations, and type 2 cytokine responses. Accumulation of intestinal mast cells was examined by using flow cytometry and chloroacetate esterase tissue staining. Changes in the gut microbial community structure were assessed by using high-throughput 16S ribosomal DNA gene sequencing. RESULTS: HFD-induced obesity potentiates food-induced allergic responses associated with dysregulated intestinal effector mast cell responses, increased intestinal permeability, and gut dysbiosis. An HFD-associated microbiome was transmissible to germ-free mice, with the gut microbial community structure of recipients segregating according to the microbiota input source. Independent of an obese state, an HFD-associated gut microbiome was sufficient to confer enhanced susceptibility to food allergy. CONCLUSION: These findings identify HFD-induced microbial alterations as risk factors for experimental food allergy and uncouple a pathogenic role of an HFD-associated microbiome from obesity. Postdieting microbiome alterations caused by overindulgence of dietary fat might increase susceptibility to food allergy.


Assuntos
Dieta Hiperlipídica , Hipersensibilidade Alimentar/microbiologia , Microbioma Gastrointestinal , Animais , DNA Bacteriano/análise , Disbiose/sangue , Disbiose/microbiologia , Feminino , Hipersensibilidade Alimentar/sangue , Imunoglobulina E/sangue , Masculino , Camundongos Endogâmicos C57BL , Obesidade/sangue , Obesidade/microbiologia
4.
Mol Ecol ; 28(9): 2224-2237, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30864192

RESUMO

Bacteria that engage in long-standing associations with particular hosts are expected to evolve host-specific adaptations that limit their capacity to thrive in other environments. Consistent with this, many gut symbionts seem to have a limited host range, based on community profiling and phylogenomics. However, few studies have experimentally investigated host specialization of gut symbionts and the underlying mechanisms have largely remained elusive. Here, we studied host specialization of a dominant gut symbiont of social bees, Lactobacillus Firm5. We show that Firm5 strains isolated from honey bees and bumble bees separate into deep-branching host-specific phylogenetic lineages. Despite their divergent evolution, colonization experiments show that bumble bee strains are capable of colonizing the honey bee gut. However, they were less successful than honey bee strains, and competition with honey bee strains completely abolished their colonization. In contrast, honey bee strains of divergent phylogenetic lineages were able to coexist within individual bees. This suggests that both host selection and interbacterial competition play important roles in host specialization. Using comparative genomics of 27 Firm5 isolates, we found that the genomes of honey bee strains harbour more carbohydrate-related functions than bumble bee strains, possibly providing a competitive advantage in the honey bee gut. Remarkably, most of the genes encoding carbohydrate-related functions were not conserved among the honey bee strains, which suggests that honey bees can support a metabolically more diverse community of Firm5 strains than bumble bees. These findings advance our understanding of the genomic changes underlying host specialization.


Assuntos
Abelhas/microbiologia , Microbioma Gastrointestinal/fisiologia , Genoma Bacteriano , Lactobacillus/genética , Simbiose/genética , Animais , Bacteriocinas/genética , Genes Bacterianos , Glicosídeo Hidrolases/genética , Lactobacillus/isolamento & purificação , Filogenia , Suíça
5.
ISME Commun ; 4(1): ycae020, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38584645

RESUMO

The two evolutionarily unrelated nitric oxide-producing nitrite reductases, NirK and NirS, are best known for their redundant role in denitrification. They are also often found in organisms that do not perform denitrification. To assess the functional roles of the two enzymes and to address the sequence and structural variation within each, we reconstructed robust phylogenies of both proteins with sequences recovered from 6973 isolate and metagenome-assembled genomes and identified 32 well-supported clades of structurally distinct protein lineages. We then inferred the potential niche of each clade by considering other functional genes of the organisms carrying them as well as the relative abundances of each nir gene in 4082 environmental metagenomes across diverse aquatic, terrestrial, host-associated, and engineered biomes. We demonstrate that Nir phylogenies recapitulate ecology distinctly from the corresponding organismal phylogeny. While some clades of the nitrite reductase were equally prevalent across biomes, others had more restricted ranges. Nitrifiers make up a sizeable proportion of the nitrite-reducing community, especially for NirK in marine waters and dry soils. Furthermore, the two reductases showed distinct associations with genes involved in oxidizing and reducing other compounds, indicating that the NirS and NirK activities may be linked to different elemental cycles. Accordingly, the relative abundance and diversity of NirS versus NirK vary between biomes. Our results show the divergent ecological roles NirK and NirS-encoding organisms may play in the environment and provide a phylogenetic framework to distinguish the traits associated with organisms encoding the different lineages of nitrite reductases.

6.
Antonie Van Leeuwenhoek ; 104(6): 1159-75, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24072549

RESUMO

Understanding the changes of aquatic microbial community composition in response to changes in temperature and ultraviolet irradiation is relevant for predicting biogeochemical modifications in the functioning of natural microbial communities under global climate change scenarios. Herein we investigate shifts in the bacterioplankton composition in response to long-term changes in temperature and UV radiation. For this purpose, 15 mesocosms were seeded with composite aquatic microbial communities from natural pools within the Cuatro Cienegas Basin (Mexican Chihuahuan desert) and were subject to different temperatures and UV conditions. 16S rRNA gene clone libraries were obtained from water samples at the mid-point (4 months) and the end of the experiment (8 months). An increase in bacterial diversity over time was found in the treatment of constant temperature and UV protection, which suggests that stable environments promote the establishment of complex and diverse bacterial community. Drastic changes in the phylogenetic bacterioplankton composition and structure were observed in response to fluctuating temperature and increasing UV radiation and temperature. Fluctuating temperature induced the largest decrease of bacterial richness during the experiment, indicating that frequent temperature changes drive the reduction in abundance of several species, most notably autotrophs. The long-term impact of these environmental stresses reduced diversity and selected for generalist aquatic bacterial populations, such as Porphyrobacter. These changes at the community level occur at an ecological time scale, suggesting that under global warming scenarios cascade effects on the food web are possible if the microbial diversity is modified.


Assuntos
Bactérias/efeitos da radiação , Biota , Microbiologia da Água , Mudança Climática , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , México , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Temperatura , Raios Ultravioleta
7.
Anim Microbiome ; 5(1): 25, 2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37120592

RESUMO

BACKGROUND: To understand mechanisms of adaptation and plasticity of pollinators and other insects a better understanding of diversity and function of their key symbionts is required. Commensalibacter is a genus of acetic acid bacterial symbionts in the gut of honey bees and other insect species, yet little information is available on the diversity and function of Commensalibacter bacteria. In the present study, whole-genome sequences of 12 Commensalibacter isolates from bumble bees, butterflies, Asian hornets and rowan berries were determined, and publicly available genome assemblies of 14 Commensalibacter strains were used in a phylogenomic and comparative genomic analysis. RESULTS: The phylogenomic analysis revealed that the 26 Commensalibacter isolates represented four species, i.e. Commensalibacter intestini and three novel species for which we propose the names Commensalibacter melissae sp. nov., Commensalibacter communis sp. nov. and Commensalibacter papalotli sp. nov. Comparative genomic analysis revealed that the four Commensalibacter species had similar genetic pathways for central metabolism characterized by a complete tricarboxylic acid cycle and pentose phosphate pathway, but their genomes differed in size, G + C content, amino acid metabolism and carbohydrate-utilizing enzymes. The reduced genome size, the large number of species-specific gene clusters, and the small number of gene clusters shared between C. melissae and other Commensalibacter species suggested a unique evolutionary process in C. melissae, the Western honey bee symbiont. CONCLUSION: The genus Commensalibacter is a widely distributed insect symbiont that consists of multiple species, each contributing in a species specific manner to the physiology of the holobiont host.

8.
mBio ; 14(2): e0353822, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36939321

RESUMO

Social bees harbor conserved gut microbiotas that may have been acquired in a common ancestor of social bees and subsequently codiversified with their hosts. However, most of this knowledge is based on studies on the gut microbiotas of honey bees and bumblebees. Much less is known about the gut microbiotas of the third and most diverse group of social bees, the stingless bees. Specifically, the absence of genomic data from their microbiotas presents an important knowledge gap in understanding the evolution and functional diversity of the social bee microbiota. Here, we combined community profiling with culturing and genome sequencing of gut bacteria from six neotropical stingless bee species from Brazil. Phylogenomic analyses show that most stingless bee gut isolates form deep-branching sister clades of core members of the honey bee and bumblebee gut microbiota with conserved functional capabilities, confirming the common ancestry and ecology of their microbiota. However, our bacterial phylogenies were not congruent with those of the host, indicating that the evolution of the social bee gut microbiota was not driven by strict codiversification but included host switches and independent symbiont gain and losses. Finally, as reported for the honey bee and bumblebee microbiotas, we found substantial genomic divergence among strains of stingless bee gut bacteria, suggesting adaptation to different host species and glycan niches. Our study offers first insights into the genomic diversity of the stingless bee microbiota and highlights the need for broader samplings to understand the evolution of the social bee gut microbiota. IMPORTANCE Stingless bees are the most diverse group of the corbiculate bees and represent important pollinator species throughout the tropics and subtropics. They harbor specialized microbial communities in their gut that are related to those found in honey bees and bumblebees and that are likely important for bee health. Few bacteria have been cultured from the gut of stingless bees, which has prevented characterization of their genomic diversity and functional potential. Here, we established cultures of major members of the gut microbiotas of six stingless bee species and sequenced their genomes. We found that most stingless bee isolates belong to novel bacterial species distantly related to those found in honey bees and bumblebees and encoding similar functional capabilities. Our study offers a new perspective on the evolution of the social bee gut microbiota and presents a basis for characterizing the symbiotic relationships between gut bacteria and stingless bees.


Assuntos
Microbioma Gastrointestinal , Microbiota , Abelhas , Animais , Bactérias/genética , Filogenia , Genômica
9.
Environ Microbiol ; 14(9): 2323-33, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22639906

RESUMO

The evolutionary history and ecological differentiation of the genus Exiguobacterium was characterized within natural communities from the Cuatro Cienegas Basin, Mexico. Exiguobacterium comprises both halophilic and alkaliphilic bacteria that are abundant among the aquatic systems of the Cuatro Cienegas Basin. We obtained complete sequences of the 16srRNA gene and partial sequences of four housekeeping genes (citC, rpoB, recA and hsp70) in 183 Exiguobacterium isolates retrieved from distinct aquatic systems. We defined three main phylogroups that are closely related to marine and thermophilic species of the genus. These phylogroups were neither specific to a given aquatic system nor to a particular salinity. Phylogenetic reconstruction indicated the presence of several small clusters within the phylogroups. These clusters consisted of isolates predominantly retrieved from sediment or water. Unifrac and AdaptML analyses confirmed this observation, pointing towards a clear pattern of differentiation linked to either sediment or water habitats. Our results are in line with the concept that niche differentiation is one of the main factors shaping prokaryotic populations and leading to evolutionary divergence.


Assuntos
Bacillaceae/classificação , Bacillaceae/fisiologia , Ecossistema , Filogenia , Microbiologia do Solo , Microbiologia da Água , Bacillaceae/genética , Bacillaceae/metabolismo , Biodiversidade , Ecologia , México , Salinidade
10.
Microb Ecol ; 64(2): 346-58, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22460437

RESUMO

Microbial communities are responsible for important ecosystem processes, and their activities are regulated by environmental factors such as temperature and solar ultraviolet radiation. Here we investigate changes in aquatic microbial community structure, diversity, and evenness in response to changes in temperature and UV radiation. For this purpose, 15 mesocosms were seeded with both microbial mat communities and plankton from natural pools within the Cuatro Cienegas Basin (Mexico). Clone libraries (16S rRNA) were obtained from water samples at the beginning and at the end of the experiment (40 days). Phylogenetic analysis indicated substantial changes in aquatic community composition and structure in response to temperature and UV radiation. Extreme treatments with elevation in temperature or UV radiation reduced diversity in relation to the Control treatments, causing a reduction in richness and increase in dominance, with a proliferation of a few resistant operational taxonomic units. Each phylum was affected differentially by the new conditions, which translates in a differential modification of ecosystem functioning. This suggests that the impact of environmental stress, at least at short term, will reshape the aquatic bacterial communities of this unique ecosystem. This work also demonstrates the possibility of designing manageable synthetic microbial community ecosystems where controlled environmental variables can be manipulated. Therefore, microbial model systems offer a complementary approach to field and laboratory studies of global research problems associated with the environment.


Assuntos
Bactérias/efeitos da radiação , Água Doce/microbiologia , Temperatura , Raios Ultravioleta , Bactérias/classificação , Bactérias/genética , Clonagem Molecular , DNA Bacteriano/análise , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Ecossistema , Biblioteca Gênica , México , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
11.
Front Microbiol ; 13: 935378, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36187988

RESUMO

Due to global warming, shorter ice cover duration might drastically affect the ecology of lakes currently undergoing seasonal surface freezing. High-mountain lakes show snow-rich ice covers that determine contrasting conditions between ice-off and ice-on periods. We characterized the bacterioplankton seasonality in a deep high-mountain lake ice-covered for half a year. The lake shows a rich core bacterioplankton community consisting of three components: (i) an assemblage stable throughout the year, dominated by Actinobacteria, resistant to all environmental conditions; (ii) an ice-on-resilient assemblage dominating during the ice-covered period, which is more diverse than the other components and includes a high abundance of Verrucomicrobia; the deep hypolimnion constitutes a refuge for many of the typical under-ice taxa, many of which recover quickly during autumn mixing; and (iii) an ice-off-resilient assemblage, which members peak in summer in epilimnetic waters when the rest decline, characterized by a dominance of Flavobacterium, and Limnohabitans. The rich core community and low random elements compared to other relatively small cold lakes can be attributed to its simple hydrological network in a poorly-vegetated catchment, the long water-residence time (ca. 4 years), and the long ice-cover duration; features common to many headwater deep high-mountain lakes.

12.
Nat Commun ; 12(1): 2126, 2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33837203

RESUMO

There is accumulating evidence that the lower airway microbiota impacts lung health. However, the link between microbial community composition and lung homeostasis remains elusive. We combine amplicon sequencing and bacterial culturing to characterize the viable bacterial community in 234 longitudinal bronchoalveolar lavage samples from 64 lung transplant recipients and establish links to viral loads, host gene expression, lung function, and transplant health. We find that the lung microbiota post-transplant can be categorized into four distinct compositional states, 'pneumotypes'. The predominant 'balanced' pneumotype is characterized by a diverse bacterial community with moderate viral loads, and host gene expression profiles suggesting immune tolerance. The other three pneumotypes are characterized by being either microbiota-depleted, or dominated by potential pathogens, and are linked to increased immune activity, lower respiratory function, and increased risks of infection and rejection. Collectively, our findings establish a link between the lung microbial ecosystem, human lung function, and clinical stability post-transplant.


Assuntos
Rejeição de Enxerto/microbiologia , Transplante de Pulmão/efeitos adversos , Pulmão/microbiologia , Microbiota/imunologia , Pneumonia Bacteriana/microbiologia , Adulto , Aloenxertos/imunologia , Aloenxertos/microbiologia , Bactérias/genética , Bactérias/imunologia , Bactérias/isolamento & purificação , Bactérias/patogenicidade , Carga Bacteriana/imunologia , Técnicas Bacteriológicas , Líquido da Lavagem Broncoalveolar/microbiologia , Broncoscopia , DNA Bacteriano/isolamento & purificação , Feminino , Rejeição de Enxerto/diagnóstico , Rejeição de Enxerto/imunologia , Humanos , Tolerância Imunológica , Estudos Longitudinais , Pulmão/imunologia , Masculino , Metagenômica , Microbiota/genética , Pessoa de Meia-Idade , Pneumonia Bacteriana/diagnóstico , Pneumonia Bacteriana/imunologia , Estudos Prospectivos , RNA Ribossômico 16S/genética
13.
PLoS Biol ; 5(3): e77, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17355176

RESUMO

The world's oceans contain a complex mixture of micro-organisms that are for the most part, uncharacterized both genetically and biochemically. We report here a metagenomic study of the marine planktonic microbiota in which surface (mostly marine) water samples were analyzed as part of the Sorcerer II Global Ocean Sampling expedition. These samples, collected across a several-thousand km transect from the North Atlantic through the Panama Canal and ending in the South Pacific yielded an extensive dataset consisting of 7.7 million sequencing reads (6.3 billion bp). Though a few major microbial clades dominate the planktonic marine niche, the dataset contains great diversity with 85% of the assembled sequence and 57% of the unassembled data being unique at a 98% sequence identity cutoff. Using the metadata associated with each sample and sequencing library, we developed new comparative genomic and assembly methods. One comparative genomic method, termed "fragment recruitment," addressed questions of genome structure, evolution, and taxonomic or phylogenetic diversity, as well as the biochemical diversity of genes and gene families. A second method, termed "extreme assembly," made possible the assembly and reconstruction of large segments of abundant but clearly nonclonal organisms. Within all abundant populations analyzed, we found extensive intra-ribotype diversity in several forms: (1) extensive sequence variation within orthologous regions throughout a given genome; despite coverage of individual ribotypes approaching 500-fold, most individual sequencing reads are unique; (2) numerous changes in gene content some with direct adaptive implications; and (3) hypervariable genomic islands that are too variable to assemble. The intra-ribotype diversity is organized into genetically isolated populations that have overlapping but independent distributions, implying distinct environmental preference. We present novel methods for measuring the genomic similarity between metagenomic samples and show how they may be grouped into several community types. Specific functional adaptations can be identified both within individual ribotypes and across the entire community, including proteorhodopsin spectral tuning and the presence or absence of the phosphate-binding gene PstS.


Assuntos
Microbiologia da Água , Biologia Computacional , Cadeia Alimentar , Oceanos e Mares , Plâncton , Especificidade da Espécie
14.
Water Res ; 158: 22-33, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31009831

RESUMO

Explosives used in mining operations release reactive nitrogen (N) that discharge into surrounding waters. Existing pond systems at mine sites could be used for N removal through denitrification and we investigated capacity in tailings and clarification pond sediments at an iron-ore mine site. Despite differences in microbial community structure in the two ponds, the potential denitrification rates were similar, although carbon limited. Therefore, a microcosm experiment in which we amended sediment from the clarification pond with acetate, cellulose or green algae as possible carbon sources was conducted during 10 weeks under denitrifying conditions. Algae and acetate treatments showed efficient nitrate removal and increased potential denitrification rates, whereas cellulose was not different from the control. Denitrifiers were overall more abundant than bacteria performing dissimilatory nitrate reduction to ammonium (DNRA) or anaerobic ammonium oxidation, although DNRA bacteria increased in the algae treatment and this coincided with accumulation of ammonium. The algae addition also caused higher emissions of methane (CH4) and nitrous oxide (N2O). The bacterial community in this treatment had a large proportion of Bacteroidia, sulfate reducing taxa and bacteria known as fermenters. Functional gene abundances indicated an imbalance between organisms that produce N2O in relation to those that can reduce it, with the algae treatment showing the lowest relative capacity for N2O reduction. These findings show that pond sediments have the potential to contribute to mitigating nitrate levels in water from mining industry, but it is important to consider the type of carbon supply as it affects the community composition, which in turn can lead to unwanted processes and increased greenhouse gas emissions.


Assuntos
Carbono , Desnitrificação , Bactérias , Óxido Nitroso , Lagoas
15.
Curr Opin Microbiol ; 43: 69-76, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29309997

RESUMO

Gut microbiota studies on diverse animals facilitate our understanding of the general principles governing microbiota-host interactions. The honey bee adds a relevant study system due to the simplicity and experimental tractability of its gut microbiota, but also because bees are important pollinators that suffer from population declines worldwide. The use of gnotobiotic bees combined with genetic tools, 'omics' analysis, and experimental microbiology has recently provided important insights about the impact of the microbiota on bee health and the general functioning of gut ecosystems.


Assuntos
Bactérias/metabolismo , Abelhas/microbiologia , Microbioma Gastrointestinal/fisiologia , Animais , Bactérias/genética , Peso Corporal , Fermentação , Microbioma Gastrointestinal/genética , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/fisiologia , Genômica/métodos , Vida Livre de Germes , Pólen/metabolismo
16.
Res Microbiol ; 169(6): 343-347, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29752987

RESUMO

Reduction of nitrite to nitric oxide in denitrification is catalysed by two different nitrite reductases, encoded by nirS or nirK. Long considered mutually exclusive and functionally redundant in denitrifying bacteria, we show expression of both genes co-occurring in Pseudomonas stutzeri. The differential expression patterns between strain AN10 and JM300 in relation to oxygen and nitrate and their different denitrification phenotypes, with AN10 reducing nitrate more rapidly and accumulating nitrite, suggest that nirS and nirK can have different roles. Dissimilar gene arrangements and transcription factors in the nir gene neighbourhoods could explain the observed differences in gene expression and denitrification activity.


Assuntos
Citocromos/genética , Citocromos/metabolismo , Desnitrificação/fisiologia , Regulação da Expressão Gênica/genética , Óxido Nítrico/biossíntese , Nitrito Redutases/genética , Nitrito Redutases/metabolismo , Pseudomonas stutzeri/genética , Pseudomonas stutzeri/metabolismo , Desnitrificação/genética , Nitratos/química , Nitritos/química , Oxirredução , Oxigênio/química , Transativadores/genética , Transativadores/metabolismo
17.
Sci Rep ; 6: 39208, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27966627

RESUMO

The detection of NO-forming nitrite reductase genes (nir) has become the standard when studying denitrifying communities in the environment, despite well-known amplification biases in available primers. We review the performance of 35 published and 121 newly designed primers targeting the nirS and nirK genes, against sequences from complete genomes and 47 metagenomes from three major habitats where denitrification is important. There were no optimal universal primer pairs for either gene, although published primers targeting nirS displayed up to 75% coverage. The alternative is clade-specific primers, which show a trade-off between coverage and specificity. The test against metagenomic datasets showed a distinct performance of primers across habitats. The implications of clade-specific nir primers choice and their performance for ecological inference when used for quantitative estimates and in sequenced-based community ecology studies are discussed and our phylogenomic primer evaluation can be used as a reference along with their environmental specificity as a guide for primer selection. Based on our results, we also propose a general framework for primer evaluation that emphasizes the testing of coverage and phylogenetic range using full-length sequences from complete genomes, as well as accounting for environmental range using metagenomes. This framework serves as a guideline to simplify primer performance comparisons while explicitly addressing the limitations and biases of the primers evaluated.


Assuntos
Bactérias/classificação , Citocromos/genética , Primers do DNA/genética , Nitrito Redutases/genética , Bactérias/metabolismo , Proteínas de Bactérias/genética , Simulação por Computador , Desnitrificação , Metagenômica , Filogenia
18.
Environ Microbiol Rep ; 8(4): 486-92, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26929183

RESUMO

Denitrification is of global significance for the marine nitrogen budget and the main process for nitrogen loss in coastal sediments. This facultative anaerobic respiratory pathway is modular in nature and the final step, the reduction of nitrous oxide (N2 O), is performed by microorganisms with a complete denitrification pathway as well as those only capable of N2 O reduction. Fluctuating oxygen availability is a significant driver of denitrification in sediments, but the effects on the overall N2 O-reducing community that ultimately controls the emission of N2 O from marine sediments is not well known. To investigate the effects of different oxygen regimes on N2 O reducing communities, coastal marine surface sediment was incubated in microcosms under oxic, anoxic or oscillating oxygen conditions in the overlying water for 137 days. Quantification of the genetic potential for denitrification, anammox and respiratory ammonification indicated that denitrification supported nitrogen removal in these sediments. Furthermore, denitrifiers with a complete pathway were identified as the dominant community involved in N2 O reduction, rather than organisms that are only N2 O reducers. Specific lineages within each group were associated with different oxygen regimes suggesting that oxygen availability in the overlying water is associated with habitat partitioning of N2 O reducers in coastal marine surface sediments.


Assuntos
Sedimentos Geológicos/microbiologia , Microbiota , Óxido Nitroso/metabolismo , Oxigênio/análise , Água do Mar/química , Aerobiose , Anaerobiose , Desnitrificação , Oxirredução
19.
Sci Rep ; 5: 11153, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-26084520

RESUMO

Plasmodiophora brassicae causes clubroot, a major disease of Brassica oil and vegetable crops worldwide. P. brassicae is a Plasmodiophorid, obligate biotrophic protist in the eukaryotic kingdom of Rhizaria. Here we present the 25.5 Mb genome draft of P. brassicae, developmental stage-specific transcriptomes and a transcriptome of Spongospora subterranea, the Plasmodiophorid causing powdery scab on potato. Like other biotrophic pathogens both Plasmodiophorids are reduced in metabolic pathways. Phytohormones contribute to the gall phenotypes of infected roots. We report a protein (PbGH3) that can modify auxin and jasmonic acid. Plasmodiophorids contain chitin in cell walls of the resilient resting spores. If recognized, chitin can trigger defense responses in plants. Interestingly, chitin-related enzymes of Plasmodiophorids built specific families and the carbohydrate/chitin binding (CBM18) domain is enriched in the Plasmodiophorid secretome. Plasmodiophorids chitin synthases belong to two families, which were present before the split of the eukaryotic Stramenopiles/Alveolates/Rhizaria/Plantae and Metazoa/Fungi/Amoebozoa megagroups, suggesting chitin synthesis to be an ancient feature of eukaryotes. This exemplifies the importance of genomic data from unexplored eukaryotic groups, such as the Plasmodiophorids, to decipher evolutionary relationships and gene diversification of early eukaryotes.


Assuntos
Quitina Sintase/genética , Quitina Sintase/metabolismo , Genoma de Protozoário , Estágios do Ciclo de Vida , Plasmodioforídeos/fisiologia , Evolução Biológica , Metabolismo dos Carboidratos , Quitina Sintase/química , Análise por Conglomerados , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Metaboloma , Metabolômica , Modelos Moleculares , Família Multigênica , Reguladores de Crescimento de Plantas/farmacologia , Plasmodioforídeos/efeitos dos fármacos , Conformação Proteica
20.
FEMS Microbiol Ecol ; 80(2): 479-87, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22283841

RESUMO

Mexico is a center of diversity for pines, but few studies have examined the ectomycorrhizal (ECM) fungal communities associated with pines in this country. We investigated the ECM communities associated with Pinus montezumae seedlings and mature trees in neotropical forests of central Mexico and compared their structure and species composition. Root tips were sampled on both planted seedlings and naturally occurring adult trees. A total of 42 ECM operational taxonomic units (OTUs) was found on P. montezumae. Diversity and similarity indices showed that community structure was similar for both plant growth stages, but phylogenetic diversity and Chao-estimated richness were higher for seedlings. Species composition differed between communities. The dominant OTUs belonged to the families Atheliaceae, Cortinariaceae, and Sebacinaceae, although different taxa appeared to colonize seedlings and adults. Only 12 OTUs were shared between seedlings and adults, which suggests that ECM fungi which colonize seedlings are still not fully incorporated into mycelial networks and that ECM taxa colonizing young individuals of P. montezumae are likely to come from fungal propagules. Intra-generic diversity could be an insurance mechanism to maintain forest productivity under stressed conditions. This is the first report describing the abundance of Atheliaceae in tree roots in neotropical ecosystems.


Assuntos
Micorrizas/classificação , Pinus/microbiologia , Adulto , Ecossistema , Feminino , Humanos , México , Micorrizas/genética , Micorrizas/crescimento & desenvolvimento , Filogenia , Pinus/crescimento & desenvolvimento , Pinus/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Plântula/crescimento & desenvolvimento , Plântula/microbiologia , Árvores/crescimento & desenvolvimento , Árvores/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA