Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Cell Physiol ; 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212955

RESUMO

Aging is associated with the steady decline of several cellular processes. The loss of skeletal muscle mass, termed sarcopenia, is one of the major hallmarks of aging. Aged skeletal muscle exhibits a robust reduction in its regenerative capacity due to dysfunction (i.e., senescence, lack of self-renewal, and impaired differentiation) of resident muscle stem cells, called satellite cells. To replicate aging in vitro, immortalized skeletal muscle cells (myoblasts) can be treated with various agents to mimic age-related dysfunction; however, these come with their own set of limitations. In the present study, we used sequential passaging of mouse myoblasts to mimic impaired differentiation that is observed in aged skeletal muscle. Further, we investigated mitochondrial apoptotic mechanisms to better understand the impaired differentiation in these "aged" cells. Our data shows that sequential passaging (>20 passages) of myoblasts is accompanied with significant reductions in differentiation and elevated cell death. Furthermore, high-passage (HP) myoblasts exhibit greater mitochondrial-mediated apoptotic signaling through mitochondrial BAX translocation, CYCS and AIFM1 release, and caspase-9 activation. Finally, we show that inhibition of mitochondrial outer membrane permeability partly recovered differentiation in HP myoblasts. Together, our findings suggests that mitochondrial apoptotic signaling is a contributing factor to the diminished differentiation that is observed in aged myoblasts.

2.
Am J Respir Crit Care Med ; 206(12): 1495-1507, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-35876129

RESUMO

Rationale: It remains unclear how gastroesophageal reflux disease (GERD) affects allograft microbial community composition in lung transplant recipients and its impact on lung allograft inflammation and function. Objectives: Our objective was to compare the allograft microbiota in lung transplant recipients with or without clinically diagnosed GERD in the first year after transplant and assess associations between GERD, allograft microbiota, inflammation, and acute and chronic lung allograft dysfunction (ALAD and CLAD). Methods: A total of 268 BAL samples were collected from 75 lung transplant recipients at a single transplant center every 3 months after transplant for 1 year. Ten transplant recipients from a separate transplant center provided samples before and after antireflux Nissen fundoplication surgery. Microbial community composition and density were measured using 16S ribosomal RNA gene sequencing and quantitative polymerase chain reaction, respectively, and inflammatory markers and bile acids were quantified. Measurements and Main Results: We observed a range of allograft community composition with three discernible types (labeled community state types [CSTs] 1-3). Transplant recipients with GERD were more likely to have CST1, characterized by high bacterial density and relative abundance of the oropharyngeal colonizing genera Prevotella and Veillonella. GERD was associated with more frequent transitions to CST1. CST1 was associated with lower inflammatory cytokine concentrations than pathogen-dominated CST3 across the range of microbial densities observed. Cox proportional hazard models revealed associations between CST3 and the development of ALAD/CLAD. Nissen fundoplication decreased bacterial load and proinflammatory cytokines. Conclusions: GERD was associated with a high bacterial density, Prevotella- and Veillonella-dominated CST1. CST3, but not CST1 or GERD, was associated with inflammation and early development of ALAD and CLAD. Nissen fundoplication was associated with a reduction in microbial density in BAL fluid samples, especially the CST1-specific genus, Prevotella.


Assuntos
Refluxo Gastroesofágico , Transplante de Pulmão , Microbiota , Humanos , Estudos Retrospectivos , Refluxo Gastroesofágico/complicações , Pulmão , Inflamação , Aloenxertos
3.
Eur Respir J ; 59(4)2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34475226

RESUMO

BACKGROUND: Survival after lung transplantation (LTx) is hampered by uncontrolled inflammation and alloimmunity. Regulatory T-cells (Tregs) are being studied as a cellular therapy in solid organ transplantation. Whether these systemically administered Tregs can function at the appropriate location and time is an important concern. We hypothesised that in vitro-expanded recipient-derived Tregs can be delivered to donor lungs prior to LTx via ex vivo lung perfusion (EVLP), maintaining their immunomodulatory ability. METHODS: In a rat model, Wistar Kyoto (WKy) CD4+CD25high Tregs were expanded in vitro prior to EVLP. Expanded Tregs were administered to Fisher 344 (F344) donor lungs during EVLP; left lungs were transplanted into WKy recipients. Treg localisation and function post-transplant were assessed. In a proof-of-concept experiment, cryopreserved expanded human CD4+CD25+CD127low Tregs were thawed and injected into discarded human lungs during EVLP. RESULTS: Rat Tregs entered the lung parenchyma and retained suppressive function. Expanded Tregs had no adverse effect on donor lung physiology during EVLP; lung water as measured by wet-to-dry weight ratio was reduced by Treg therapy. The administered cells remained in the graft at 3 days post-transplant where they reduced activation of intra-graft effector CD4+ T-cells; these effects were diminished by day 7. Human Tregs entered the lung parenchyma during EVLP where they expressed key immunoregulatory molecules (CTLA4+, 4-1BB+, CD39+ and CD15s+). CONCLUSIONS: Pre-transplant Treg administration can inhibit alloimmunity within the lung allograft at early time points post-transplant. Our organ-directed approach has potential for clinical translation.


Assuntos
Transplante de Pulmão , Linfócitos T Reguladores , Animais , Pulmão , Transplante de Pulmão/efeitos adversos , Perfusão/efeitos adversos , Ratos , Doadores de Tecidos
4.
Respir Res ; 23(1): 219, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36028826

RESUMO

BACKGROUND: Bronchoalveolar lavage (BAL) is a key tool in respiratory medicine for sampling the distal airways. BAL bile acids are putative biomarkers of pulmonary microaspiration, which is associated with poor outcomes after lung transplantation. Compared to BAL, large airway bronchial wash (LABW) samples the tracheobronchial space where bile acids may be measurable at more clinically relevant levels. We assessed whether LABW bile acids, compared to BAL bile acids, are more strongly associated with poor clinical outcomes in lung transplant recipients. METHODS: Concurrently obtained BAL and LABW at 3 months post-transplant from a retrospective cohort of 61 lung transplant recipients were analyzed for taurocholic acid (TCA), glycocholic acid (GCA), and cholic acid by mass spectrometry and 10 inflammatory proteins by multiplex immunoassay. Associations between bile acids with inflammatory proteins and acute lung allograft dysfunction were assessed using Spearman correlation and logistic regression, respectively. Time to chronic lung allograft dysfunction and death were evaluated using multivariable Cox proportional hazards and Kaplan-Meier methods. RESULTS: Most bile acids and inflammatory proteins were higher in LABW than in BAL. LABW bile acids correlated with inflammatory proteins within and between sample type. LABW TCA and GCA were associated with acute lung allograft dysfunction (OR = 1.368; 95%CI = 1.036-1.806; P = 0.027, OR = 1.064; 95%CI = 1.009-1.122; P = 0.022, respectively). No bile acids were associated with chronic lung allograft dysfunction. Adjusted for risk factors, LABW TCA and GCA predicted death (HR = 1.513; 95%CI = 1.014-2.256; P = 0.042, HR = 1.597; 95%CI = 1.078-2.366; P = 0.020, respectively). Patients with LABW TCA in the highest tertile had worse survival compared to all others. CONCLUSIONS: LABW bile acids are more strongly associated than BAL bile acids with inflammation, acute lung allograft dysfunction, and death in lung transplant recipients. Collection of LABW may be useful in the evaluation of microaspiration in lung transplantation and other respiratory diseases.


Assuntos
Transplante de Pulmão , Transplantados , Ácidos e Sais Biliares , Biomarcadores , Lavagem Broncoalveolar , Líquido da Lavagem Broncoalveolar , Estudos de Coortes , Humanos , Pulmão , Estudos Retrospectivos
5.
Am J Transplant ; 19(12): 3377-3389, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31365766

RESUMO

Chronic lung allograft dysfunction (CLAD) limits long-term survival after lung transplant (LT). Ischemia-reperfusion injury (IRI) promotes chronic rejection (CR) and CLAD, but the underlying mechanisms are not well understood. To examine mechanisms linking IRI to CR, a mouse orthotopic LT model using a minor alloantigen strain mismatch (C57BL/10 [B10, H-2b ] → C57BL/6 [B6, H-2b ]) and isograft controls (B6→B6) was used with antecedent minimal or prolonged graft storage. The latter resulted in IRI with subsequent airway and parenchymal fibrosis in prolonged storage allografts but not isografts. This pattern of CR after IRI was associated with the formation of B cell-rich tertiary lymphoid organs within the grafts and circulating autoantibodies. These processes were attenuated by B cell depletion, despite preservation of allograft T cell content. Our observations suggest that IRI may promote B cell recruitment that drives CR after LT. These observations have implications for the mechanisms leading to CLAD after LT.


Assuntos
Autoanticorpos/imunologia , Linfócitos B/imunologia , Fibrose/patologia , Rejeição de Enxerto/patologia , Sobrevivência de Enxerto/imunologia , Transplante de Pulmão/efeitos adversos , Traumatismo por Reperfusão/complicações , Aloenxertos , Animais , Doença Crônica , Modelos Animais de Doenças , Fibrose/etiologia , Rejeição de Enxerto/etiologia , Masculino , Camundongos , Traumatismo por Reperfusão/patologia
6.
Transpl Int ; 32(9): 965-973, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31002407

RESUMO

Chronic lung allograft dysfunction (CLAD) remains the leading cause of late death after lung transplantation. Epithelial injury is thought to be a key event in the pathogenesis of CLAD. M30 and M65 are fragments of cytokeratin-18 released specifically during epithelial cell apoptosis and total cell death, respectively. We investigated whether M30 and M65 levels in bronchoalveolar lavage (BAL) correlate with CLAD subtypes: restrictive allograft syndrome (RAS) versus bronchiolitis obliterans syndrome (BOS). BALs were obtained from 26 patients with established CLAD (10 RAS, 16 BOS) and 19 long-term CLAD-free controls. Samples with concurrent infection or acute rejection were excluded. Protein levels were measured by ELISA. Variables were compared using Kruskal-Wallis, Mann-Whitney U test and Chi-squared tests. Association of M30 and M65 levels with post-CLAD survival was assessed using a Cox PH models. M65 levels were significantly higher in RAS compared to BOS and long-term CLAD-free controls and correlated with worse post-CLAD survival. Lung epithelial cell death is enhanced in patients with RAS. Detection of BAL M65 may be used to differentiate CLAD subtypes and as a prognostic marker in patients with established CLAD. Understanding the role of epithelial cell death in CLAD pathogenesis may help identify new therapeutic targets to improve outcome.


Assuntos
Queratina-18/metabolismo , Pneumopatias/metabolismo , Transplante de Pulmão , Fragmentos de Peptídeos/metabolismo , Complicações Pós-Operatórias/metabolismo , Adulto , Biomarcadores/metabolismo , Líquido da Lavagem Broncoalveolar/química , Morte Celular , Células Epiteliais/metabolismo , Feminino , Humanos , Queratina-18/análise , Pneumopatias/mortalidade , Masculino , Pessoa de Meia-Idade , Ontário/epidemiologia , Fragmentos de Peptídeos/análise , Complicações Pós-Operatórias/mortalidade , Estudos Retrospectivos
7.
Respir Res ; 19(1): 102, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29801490

RESUMO

BACKGROUND: Bronchoalveolar lavage (BAL) has proven to be very useful to monitor the lung allograft after transplantation. In addition to allowing detection of infections, multiple BAL analytes have been proposed as potential biomarkers of lung allograft rejection or dysfunction. However, BAL collection is not well standardized and differences in BAL collection represent an important source of variation. We hypothesized that there are systematic differences between sequential BALs that are relevant to BAL analysis. METHODS: As part of 126 consecutive bronchoscopies in lung transplant recipients, two sequential BALs (BAL1 and BAL2) were performed in one location during each bronchoscopy by instilling and suctioning 50 ml of normal saline twice into separate containers. Cell concentration, viability and differentials, Surfactant Protein-D (SP-D), Club Cell Secretory Protein (CCSP), and levels of CXCL10, IL-10, CCL2, CCL5, VEGF-C, RAGE, CXCL9, CXCL1, IL-17A, IL-21, PDGF, and GCSF were compared between BAL1 and BAL2. RESULTS: Total cell concentration did not differ between BAL1 and BAL2; however, compared to BAL2, BAL1 had more dead cells, epithelial cells, neutrophils, and higher concentrations of airway epithelium-derived CCSP and inflammatory markers. BAL2 had a higher concentration of SP-D compared to BAL1. CONCLUSION: In this study performed in lung transplant recipients, we show that sequential BALs represent different lung compartments and have distinct compositions. BAL1 represents the airway compartment with more epithelial cells, neutrophils, and epithelium-derived CCSP. Conversely, BAL2 samples preferentially the distal bronchoalveolar space with greater cell viability and higher SP-D. Our findings illustrate how the method of BAL collection can influence analyte concentrations and further emphasize the need for a standardized approach in translational research involving BAL samples.


Assuntos
Pesquisa Biomédica/tendências , Líquido da Lavagem Broncoalveolar/citologia , Lavagem Broncoalveolar/tendências , Transplante de Pulmão/tendências , Pulmão/patologia , Adulto , Idoso , Broncoscopia/tendências , Estudos de Coortes , Feminino , Humanos , Pulmão/cirurgia , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Tempo
8.
Mucosal Immunol ; 16(2): 104-120, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36842540

RESUMO

Chronic lung allograft dysfunction (CLAD) limits survival after lung transplantation. Noxious stimuli entering the airways foster CLAD development. Classical dendritic cells (cDCs) link innate and adaptive immunity and exhibit regional and functional specialization in the lung. The transcription factor basic leucine zipper ATF-like 3 (BATF3) is absolutely required for the development of type 1 cDCs (cDC1s), which reside in the airway epithelium and have variable responses depending on the context. We studied the role of BATF3 in a mouse minor alloantigen-mismatched orthotopic lung transplant model of CLAD with and without airway inflammation triggered by repeated administration of intratracheal lipopolysaccharide (LPS). We found that cDC1s accumulated in allografts compared with isografts and that donor cDC1s were gradually replaced by recipient cDC1s. LPS administration increased the number of cDC1s and enhanced their state of activation. We found that Batf3-/- recipient mice experienced reduced acute rejection in response to LPS; in contrast, Batf3-/- donor grafts underwent enhanced lung and skin allograft rejection and drove augmented recipient cluster of differentiation 8+ T-cell expansion in the absence of LPS. Our findings suggest that donor and recipient cDC1s have differing and context-dependent roles and may represent a therapeutic target in lung transplantation.


Assuntos
Transplante de Pulmão , Fibrose Pulmonar , Animais , Camundongos , Aloenxertos , Fibrose , Rejeição de Enxerto/tratamento farmacológico , Lipopolissacarídeos , Pulmão/patologia , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/patologia , Transplante Homólogo
9.
JCI Insight ; 8(21)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37937643

RESUMO

Chronic lung allograft dysfunction (CLAD) is a major complication after lung transplantation that results from a complex interplay of innate inflammatory and alloimmune factors, culminating in parenchymal and/or obliterative airway fibrosis. Excessive IL-17A signaling and chronic inflammation have been recognized as key factors in these pathological processes. Herein, we developed a model of repeated airway inflammation in mouse minor alloantigen-mismatched single-lung transplantation. Repeated intratracheal LPS instillations augmented pulmonary IL-17A expression. LPS also increased acute rejection, airway epithelial damage, and obliterative airway fibrosis, similar to human explanted lung allografts with antecedent episodes of airway infection. We then investigated the role of donor and recipient IL-17 receptor A (IL-17RA) in this context. Donor IL-17RA deficiency significantly attenuated acute rejection and CLAD features, whereas recipient IL-17RA deficiency only slightly reduced airway obliteration in LPS allografts. IL-17RA immunofluorescence positive staining was greater in human CLAD lungs compared with control human lung specimens, with localization to fibroblasts and myofibroblasts, which was also seen in mouse LPS allografts. Taken together, repeated airway inflammation after lung transplantation caused local airway epithelial damage, with persistent elevation of IL-17A and IL-17RA expression and particular involvement of IL-17RA on donor structural cells in development of fibrosis.


Assuntos
Fibrose Pulmonar , Infecções Respiratórias , Camundongos , Humanos , Animais , Interleucina-17/metabolismo , Receptores de Interleucina-17/metabolismo , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/metabolismo , Fibrose Pulmonar/patologia , Pulmão/patologia , Inflamação/metabolismo , Fibrose , Infecções Respiratórias/metabolismo , Aloenxertos
10.
Transpl Immunol ; 69: 101467, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34547417

RESUMO

IL-17A is implicated in the pathogenesis of chronic lung allograft dysfunction, which limits survival after lung transplantation. While many cells express the IL-17 receptor A (IL-17RA) which is the main receptor for IL-17A, the cellular targets of IL-17A in development of post-transplant fibrosis are unknown. The purpose of this study was to determine whether IL-17RA expression by donor or recipient structural or bone marrow (BM) cells is required for the development of allograft fibrosis in a mouse intrapulmonary tracheal transplantation (IPTT) model. BM chimeras were generated using C57BL/6 and IL-17RA-knockout mice. After engraftment, allogeneic IPTTs were performed using the chimeric and BALB/c mice as donors or recipients. This allowed us to assess the effect of IL-17RA deficiency in recipient BM, recipient structural, donor BM, or donor structural compartments separately. Tracheal grafts, the surrounding lung, and mediastinal lymph nodes were assessed 28 days after IPTT. Only recipient BM IL-17RA deficiency resulted in attenuation of tracheal graft obliteration. In the setting of recipient BM IL-17RA deficiency, T cells and neutrophils were decreased in mediastinal lymph nodes. Additionally, recipient BM IL-17RA deficiency was associated with increased B220+PNAd+ lymphoid aggregates, consistent with tertiary lymphoid organs, in proximity to the tracheal allograft. In this IPTT model, recipient BM-derived cells appear to be the primary targets of IL-17RA signaling during fibrotic obliteration of the tracheal allograft.


Assuntos
Medula Óssea , Receptores de Interleucina-17 , Aloenxertos , Animais , Transplante de Medula Óssea , Fibrose , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
11.
J Heart Lung Transplant ; 40(12): 1540-1549, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34215500

RESUMO

BACKGROUND: Acute cellular rejection (ACR) remains the most significant risk factor for chronic lung allograft dysfunction (CLAD). While clinically significant or higher-grade (≥A2) ACR is generally treated with augmented immunosuppression (IS), the management of clinically stable grade A1 ACR remains controversial. At our center, patients with clinically stable grade A1 ACR are routinely not treated with augmented IS. While the overall outcomes in this group of patients at our center are equivalent to patients with stable A0 pathology, CLAD and death rates remain overall high. We hypothesized that a distinct cytokine signature at the time of early minimal rejection state would be associated with worse outcomes. Specifically, we aimed to determine whether bronchoalveolar lavage (BAL) biomarkers at the time of first clinically stable grade A1 ACR (CSA1R) are predictive of subsequent CLAD or death. METHODS: Among all adult, bilateral, first lung transplants, performed 2010-2016, transbronchial biopsies obtained within the first-year post-transplant were categorized as clinically stable or unstable based on the presence or absence of ≥10% concurrent drop in forced expiratory volume in 1 second (FEV1). We assessed BAL samples obtained at the time of CSA1R episodes, which were not preceded by another ACR (i.e., first episodes). Twenty-one proteins previously associated with ACR or CLAD were measured in the BAL using a multiplex bead assay. Association between protein levels and subsequent CLAD or death was assessed using Cox Proportional Hazards models, adjusted for relevant peri-transplant clinical covariates. RESULTS: We identified 75 patients with first CSA1R occurring at a median time of 98 days (range 48.5-197) post-transplant. Median time from transplant to CLAD or death was 1247 (756.5-1921.5) and 1641 days (1024.5-2326.5), respectively. In multivariable models, levels of MCP1/CCL2, S100A8, IL10, TNF-receptor 1, and pentraxin 3 (PTX3) were associated with both CLAD development and death (p < 0.05 for all). PTX3 remained significantly associated with both CLAD and death after adjusting for multiple comparisons. CONCLUSION: Our data indicate that a focused BAL protein signature, with PTX3 having the strongest association, may be useful in determining a subset of CSA1R patients at increased risk and may benefit from a more aggressive management strategy.


Assuntos
Líquido da Lavagem Broncoalveolar/química , Citocinas/metabolismo , Rejeição de Enxerto/etiologia , Transplante de Pulmão/efeitos adversos , Disfunção Primária do Enxerto/etiologia , Biomarcadores/metabolismo , Doença Crônica , Feminino , Rejeição de Enxerto/metabolismo , Rejeição de Enxerto/mortalidade , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Disfunção Primária do Enxerto/metabolismo , Disfunção Primária do Enxerto/mortalidade , Estudos Retrospectivos , Medição de Risco , Taxa de Sobrevida
12.
J Heart Lung Transplant ; 39(9): 934-944, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32487471

RESUMO

BACKGROUND: Gastroesophageal reflux disease (GERD) is a risk factor for chronic lung allograft dysfunction. Bile acids-putative markers of gastric microaspiration-and inflammatory proteins in the bronchoalveolar lavage (BAL) have been associated with chronic lung allograft dysfunction, but their relationship with GERD remains unclear. Although GERD is thought to drive chronic microaspiration, the selection of patients for anti-reflux surgery lacks precision. This multicenter study aimed to test the association of BAL bile acids with GERD, lung inflammation, allograft function, and anti-reflux surgery. METHODS: We analyzed BAL obtained during the first post-transplant year from a retrospective cohort of patients with and without GERD, as well as BAL obtained before and after Nissen fundoplication anti-reflux surgery from a separate cohort. Levels of taurocholic acid (TCA), glycocholic acid, and cholic acid were measured using mass spectrometry. Protein markers of inflammation and injury were measured using multiplex assay and enzyme-linked immunosorbent assay. RESULTS: At 3 months after transplantation, TCA, IL-1ß, IL-12p70, and CCL5 were higher in the BAL of patients with GERD than in that of no-GERD controls. Elevated TCA and glycocholic acid were associated with concurrent acute lung allograft dysfunction and inflammatory proteins. The BAL obtained after anti-reflux surgery contained reduced TCA and inflammatory proteins compared with that obtained before anti-reflux surgery. CONCLUSIONS: Targeted monitoring of TCA and selected inflammatory proteins may be useful in lung transplant recipients with suspected reflux and microaspiration to support diagnosis and guide therapy. Patients with elevated biomarker levels may benefit most from anti-reflux surgery to reduce microaspiration and allograft inflammation.


Assuntos
Ácidos e Sais Biliares/metabolismo , Bronquiolite Obliterante/cirurgia , Líquido da Lavagem Broncoalveolar/química , Refluxo Gastroesofágico/complicações , Rejeição de Enxerto/metabolismo , Transplante de Pulmão , Transplantados , Adulto , Idoso , Biomarcadores/metabolismo , Bronquiolite Obliterante/complicações , Feminino , Seguimentos , Refluxo Gastroesofágico/metabolismo , Rejeição de Enxerto/etiologia , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto Jovem
13.
Appl Physiol Nutr Metab ; 43(10): 1059-1068, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29733694

RESUMO

The current study examined the contribution of central and peripheral adaptations to changes in maximal oxygen uptake (V̇O2max) following sprint interval training (SIT). Twenty-three males completed 4 weekly SIT sessions (8 × 20-s cycling bouts at ∼170% of work rate at V̇O2max, 10-s recovery) for 4 weeks. Following completion of training, the relationship between changes in V̇O2max and changes in central (cardiac output) and peripheral (arterial-mixed venous oxygen difference (a-vO2diff), muscle capillary density, oxidative capacity, fibre-type distribution) adaptations was determined in all participants using correlation analysis. Participants were then divided into tertiles on the basis of the magnitude of their individual V̇O2max responses, and differences in central and peripheral adaptations were examined in the top (HI; ∼10 mL·kg-1·min-1 increase in V̇O2max, p < 0.05) and bottom (LO; no change in V̇O2max, p > 0.05) tertiles (n = 8 each). Training had no impact on maximal cardiac output, and no differences were observed between the LO group and the HI group (p > 0.05). The a-vO2diff increased in the HI group only (p < 0.05) and correlated significantly (r = 0.71, p < 0.01) with changes in V̇O2max across all participants. Muscle capillary density (p < 0.02) and ß-hydroxyacyl-CoA dehydrogenase maximal activity (p < 0.05) increased in both groups, with no between-group differences (p > 0.05). Citrate synthase maximal activity (p < 0.01) and type IIA fibre composition (p < 0.05) increased in the LO group only. Collectively, although the heterogeneity in the observed V̇O2max response following 4 weeks of SIT appears to be attributable to individual differences in systemic vascular and/or muscular adaptations, the markers examined in the current study were unable to explain the divergent V̇O2max responses in the LO and HI groups.


Assuntos
Metabolismo Energético , Exercício Físico/fisiologia , Treinamento Intervalado de Alta Intensidade/métodos , Contração Muscular , Consumo de Oxigênio , Oxigênio/sangue , Músculo Quadríceps/irrigação sanguínea , Músculo Quadríceps/metabolismo , Adaptação Fisiológica , Ciclismo , Capilares/fisiologia , Débito Cardíaco , Humanos , Masculino , Fatores de Tempo , Adulto Jovem
14.
Appl Physiol Nutr Metab ; 41(9): 953-62, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27525514

RESUMO

The present study examined the impact of a 48 h fast on the expression and activation status of SIRT1 and GCN5, the relationship between SIRT1/GCN5 and the gene expression of PGC-1α, and the PGC-1α target PDK4 in the skeletal muscle of 10 lean healthy men (age, 22.0 ± 1.5 years; peak oxygen uptake, 47.2 ± 6.7 mL/(min·kg)). Muscle biopsies and blood samples were collected 1 h postprandial (Fed) and following 48 h of fasting (Fasted). Plasma insulin (Fed, 80.8 ± 47.9 pmol/L; Fasted, not detected) and glucose (Fed, 4.36 ± 0.86; Fasted, 3.74 ± 0.25 mmol/L, p = 0.08) decreased, confirming participant adherence to fasting. Gene expression of PGC-1α decreased (p < 0.05, -24%), while SIRT1 and PDK4 increased (p < 0.05, +11% and +1023%, respectively), and GCN5 remained unchanged. No changes were observed for whole-muscle protein expression of SIRT1, GCN5, PGC-1α, or COX IV. Phosphorylation of SIRT1, AMPKα, ACC, p38 MAPK, and PKA substrates as well as nuclear acetylation status was also unaltered. Additionally, nuclear SIRT1 activity, GCN5, and PGC-1α content remained unchanged. Preliminary findings derived from regression analysis demonstrate that changes in nuclear GCN5 and SIRT1 activity/phosphorylation may contribute to the control of PGC-1α, but not PDK4, messenger RNA expression following fasting. Collectively, and in contrast with previous animal studies, our data are inconsistent with the altered activation status of SIRT1 and GCN5 in response to 48 h of fasting in human skeletal muscle.


Assuntos
Jejum/metabolismo , Regulação Enzimológica da Expressão Gênica , Histona Acetiltransferases/metabolismo , Músculo Esquelético/metabolismo , Sirtuína 1/metabolismo , Transporte Ativo do Núcleo Celular , Adulto , Biomarcadores/metabolismo , Glicemia/análise , Regulação para Baixo , Ativação Enzimática , Indução Enzimática , Histona Acetiltransferases/genética , Humanos , Insulina/sangue , Masculino , Músculo Esquelético/enzimologia , Consumo de Oxigênio , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fosforilação , Período Pós-Prandial , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Processamento de Proteína Pós-Traducional , Sirtuína 1/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA