RESUMO
NudC-like protein 2 (NUDCD2) is a 4-exon protein-coding gene at 5q34. The protein appears to act in concert with other genes regulating cell migration and microtubule extension. Early studies in model organisms show associations with LIS1, HERC2, and cohesin subunits via a co-chaperone function with Heat shock protein 90 (Hsp90). It is a candidate gene for human pathology. We present two unrelated patients with biallelic variants in NUDCD2. Their phenotypes comprise similar dysmorphic facies, midline brain hypoplasia, hypothyroidism, pulmonary and aortic valve stenosis, severe dysfunction of the liver and kidneys, profound hypotonia, and early death. The cellular analysis demonstrates the absence of the NUDCD2 protein in fibroblasts of one patient with biallelic loss-of-function variants. The data suggest that NUDCD2 deficiency causes this recognizable syndrome that has features of a ciliopathy with additional complications.
Assuntos
Anormalidades Múltiplas , Colestase , Insuficiência Renal , Humanos , Chaperonas Moleculares , Colestase/complicações , Colestase/diagnóstico , Colestase/genética , Proteínas de Choque Térmico HSP90 , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Insuficiência Renal/complicações , Insuficiência Renal/diagnóstico , Insuficiência Renal/genéticaRESUMO
PURPOSE: Recessive cytosolic aminoacyl-tRNA synthetase (ARS) deficiencies are severe multiorgan diseases, with limited treatment options. By loading transfer RNAs (tRNAs) with their cognate amino acids, ARS are essential for protein translation. However, it remains unknown why ARS deficiencies lead to specific symptoms, especially early life and during infections. We set out to increase pathophysiological insight and improve therapeutic possibilities. METHODS: In fibroblasts from patients with isoleucyl-RS (IARS), leucyl-RS (LARS), phenylalanyl-RS-beta-subunit (FARSB), and seryl-RS (SARS) deficiencies, we investigated aminoacylation activity, thermostability, and sensitivity to ARS-specific amino acid concentrations, and developed personalized treatments. RESULTS: Aminoacylation activity was reduced in all patients, and further diminished at 38.5/40 °C (PLARS and PFARSB), consistent with infectious deteriorations. With lower cognate amino acid concentrations, patient fibroblast growth was severely affected. To prevent local and/or temporal deficiencies, we treated patients with corresponding amino acids (follow-up: 1/2-2 2/3rd years), and intensified treatment during infections. All patients showed beneficial treatment effects, most strikingly in growth (without tube feeding), head circumference, development, coping with infections, and oxygen dependency. CONCLUSION: For these four ARS deficiencies, we observed a common disease mechanism of episodic insufficient aminoacylation to meet translational demands and illustrate the power of amino acid supplementation for the expanding ARS patient group. Moreover, we provide a strategy for personalized preclinical functional evaluation.
Assuntos
Aminoacil-tRNA Sintetases , Aminoácidos , Aminoacil-tRNA Sintetases/genética , Aminoacilação , Humanos , RNA de Transferência/metabolismoRESUMO
PURPOSE: JARID2, located on chromosome 6p22.3, is a regulator of histone methyltransferase complexes that is expressed in human neurons. So far, 13 individuals sharing clinical features including intellectual disability (ID) were reported with de novo heterozygous deletions in 6p22-p24 encompassing the full length JARID2 gene (OMIM 601594). However, all published individuals to date have a deletion of at least one other adjoining gene, making it difficult to determine if JARID2 is the critical gene responsible for the shared features. We aim to confirm JARID2 as a human disease gene and further elucidate the associated clinical phenotype. METHODS: Chromosome microarray analysis, exome sequencing, and an online matching platform (GeneMatcher) were used to identify individuals with single-nucleotide variants or deletions involving JARID2. RESULTS: We report 16 individuals in 15 families with a deletion or single-nucleotide variant in JARID2. Several of these variants are likely to result in haploinsufficiency due to nonsense-mediated messenger RNA (mRNA) decay. All individuals have developmental delay and/or ID and share some overlapping clinical characteristics such as facial features with those who have larger deletions involving JARID2. CONCLUSION: We report that JARID2 haploinsufficiency leads to a clinically distinct neurodevelopmental syndrome, thus establishing gene-disease validity for the purpose of diagnostic reporting.
Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Haploinsuficiência/genética , Heterozigoto , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Complexo Repressor Polycomb 2/genética , Síndrome , Sequenciamento do ExomaRESUMO
Early infantile epileptic encephalopathy 38 (EIEE38, MIM #617020) is caused by biallelic variants in ARV1, encoding a transmembrane protein of the endoplasmic reticulum with a pivotal role in glycosylphosphatidylinositol (GPI) biosynthesis. We ascertained seven new patients from six unrelated families harboring biallelic variants in ARV1, including five novel variants. Affected individuals showed psychomotor delay, hypotonia, early onset refractory seizures followed by regression and specific neuroimaging features. Flow cytometric analysis on patient fibroblasts showed a decrease in GPI-anchored proteins on the cell surface, supporting a lower residual activity of the mutant ARV1 as compared to the wildtype. A rescue assay through the transduction of lentivirus expressing wild type ARV1 cDNA effectively rescued these alterations. This study expands the clinical and molecular spectrum of the ARV1-related encephalopathy, confirming the essential role of ARV1 in GPI biosynthesis and brain function.
Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Proteínas de Membrana/deficiência , Fenótipo , Espasmos Infantis/diagnóstico , Espasmos Infantis/genética , Alelos , Substituição de Aminoácidos , Encéfalo/anormalidades , Proteínas de Transporte/genética , Análise Mutacional de DNA , Fácies , Feminino , Proteínas Ligadas por GPI/biossíntese , Estudos de Associação Genética/métodos , Glicosilfosfatidilinositóis/metabolismo , Humanos , Imageamento por Ressonância Magnética , Masculino , Proteínas de Membrana/genética , Mutação , Linhagem , Gravidez , Diagnóstico Pré-Natal/métodos , Espasmos Infantis/metabolismoRESUMO
Stickler Syndrome (SS) is a multisystem collagenopathy frequently encountered by ophthalmologists due to the high rate of ocular complications. Affected individuals are at significantly increased risk for retinal detachment and blindness, and early detection and diagnosis are critical in improving visual outcomes for these patients. Systemic findings are also common, with craniofacial, skeletal, and auditory systems often involved. SS is genotypically and phenotypically heterogenous, which can make recognizing and correctly diagnosing individuals difficult. Molecular genetic testing should be considered in all individuals with suspected SS, as diagnosis not only assists in treatment and management of the patient but may also help identify other at-risk family members. Here we review common clinical manifestation of SS and genetic tests frequently ordered as part of the SS evaluation.