Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
PLoS Biol ; 22(6): e3002665, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38935589

RESUMO

Loss of synapses between spiral ganglion neurons and inner hair cells (IHC synaptopathy) leads to an auditory neuropathy called hidden hearing loss (HHL) characterized by normal auditory thresholds but reduced amplitude of sound-evoked auditory potentials. It has been proposed that synaptopathy and HHL result in poor performance in challenging hearing tasks despite a normal audiogram. However, this has only been tested in animals after exposure to noise or ototoxic drugs, which can cause deficits beyond synaptopathy. Furthermore, the impact of supernumerary synapses on auditory processing has not been evaluated. Here, we studied mice in which IHC synapse counts were increased or decreased by altering neurotrophin 3 (Ntf3) expression in IHC supporting cells. As we previously showed, postnatal Ntf3 knockdown or overexpression reduces or increases, respectively, IHC synapse density and suprathreshold amplitude of sound-evoked auditory potentials without changing cochlear thresholds. We now show that IHC synapse density does not influence the magnitude of the acoustic startle reflex or its prepulse inhibition. In contrast, gap-prepulse inhibition, a behavioral test for auditory temporal processing, is reduced or enhanced according to Ntf3 expression levels. These results indicate that IHC synaptopathy causes temporal processing deficits predicted in HHL. Furthermore, the improvement in temporal acuity achieved by increasing Ntf3 expression and synapse density suggests a therapeutic strategy for improving hearing in noise for individuals with synaptopathy of various etiologies.


Assuntos
Células Ciliadas Auditivas Internas , Neurotrofina 3 , Sinapses , Animais , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Internas/patologia , Sinapses/metabolismo , Sinapses/fisiologia , Neurotrofina 3/metabolismo , Neurotrofina 3/genética , Camundongos , Limiar Auditivo , Potenciais Evocados Auditivos/fisiologia , Reflexo de Sobressalto/fisiologia , Percepção Auditiva/fisiologia , Gânglio Espiral da Cóclea/metabolismo , Feminino , Masculino , Perda Auditiva Oculta
2.
Glia ; 71(2): 187-204, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36052476

RESUMO

For a long time, myelin was thought to be restricted to excitatory neurons, and studies on dysmyelination focused primarily on excitatory cells. Recent evidence showed that axons of inhibitory neurons in the neocortex are also myelinated, but the role of myelin on inhibitory circuits remains unknown. Here we studied the impact of mild hypomyelination on both excitatory and inhibitory connectivity in the primary auditory cortex (A1) with well-characterized mouse models of hypomyelination due to loss of oligodendrocyte ErbB receptor signaling. Using laser-scanning photostimulation, we found that mice with mild hypomyelination have reduced functional inhibitory connections to A1 L2/3 neurons without changes in excitatory connections, resulting in altered excitatory/inhibitory balance. These effects are not associated with altered expression of GABAergic and glutamatergic synaptic components, but with reduced density of parvalbumin-positive (PV+ ) neurons, axons, and synaptic terminals, which reflect reduced PV expression by interneurons rather than PV+ neuronal loss. While immunostaining shows that hypomyelination occurs in both PV+ and PV- axons, there is a strong correlation between MBP and PV expression, suggesting that myelination influences PV expression. Together, the results indicate that mild hypomyelination impacts A1 neuronal networks, reducing inhibitory activity, and shifting networks towards excitation.


Assuntos
Córtex Auditivo , Parvalbuminas , Camundongos , Animais , Parvalbuminas/metabolismo , Córtex Auditivo/metabolismo , Receptores ErbB/metabolismo , Interneurônios/metabolismo , Oligodendroglia/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-32253211

RESUMO

The human diseases caused by the fungal pathogens Cryptococcus neoformans and Cryptococcus gattii are associated with high indices of mortality and toxic and/or cost-prohibitive therapeutic protocols. The need for affordable antifungals to combat cryptococcal disease is unquestionable. Previous studies suggested benzimidazoles as promising anticryptococcal agents combining low cost and high antifungal efficacy, but their therapeutic potential has not been demonstrated so far. In this study, we investigated the antifungal potential of fenbendazole, the most effective anticryptococcal benzimidazole. Fenbendazole was inhibitory against 17 different isolates of C. neoformans and C. gattii at a low concentration. The mechanism of anticryptococcal activity of fenbendazole involved microtubule disorganization, as previously described for human parasites. In combination with fenbendazole, the concentrations of the standard antifungal amphotericin B required to control cryptococcal growth were lower than those required when this antifungal was used alone. Fenbendazole was not toxic to mammalian cells. During macrophage infection, the anticryptococcal effects of fenbendazole included inhibition of intracellular proliferation rates and reduced phagocytic escape through vomocytosis. Fenbendazole deeply affected the cryptococcal capsule. In a mouse model of cryptococcosis, the efficacy of fenbendazole to control animal mortality was similar to that observed for amphotericin B. These results indicate that fenbendazole is a promising candidate for the future development of an efficient and affordable therapeutic tool to combat cryptococcosis.


Assuntos
Criptococose , Cryptococcus gattii , Cryptococcus neoformans , Animais , Antifúngicos/farmacologia , Criptococose/tratamento farmacológico , Fenbendazol/farmacologia , Virulência
4.
J Transl Med ; 18(1): 190, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32381006

RESUMO

BACKGROUND: The modified Gompertz equation has been proposed to fit experimental data for direct current treated tumors when multiple-straight needle electrodes are individually inserted into the base perpendicular to the tumor long axis. The aim of this work is to evaluate the efficacy of direct current generated by multiple-electrode arrays on F3II mammary carcinoma that grow in the male and female BALB/c/Cenp mice, when multiple-straight needle electrodes and multiple-pairs of electrodes are inserted in the tumor. METHODS: A longitudinal and retrospective preclinical study was carried out. Male and female BALB/c/Cenp mice, the modified Gompertz equation, intensities (2, 6 and 10 mA) and exposure times (10 and 20 min) of direct current, and three geometries of multiple-electrodes (one formed by collinear electrodes and two by pair-electrodes) were used. Tumor volume and mice weight were measured. In addition, the mean tumor doubling time, tumor regression percentage, tumor growth delay, direct current overall effectiveness and mice survival were calculated. RESULTS: The greatest growth retardation, mean doubling time, regression percentage and growth delay of the primary F3II mammary carcinoma in male and female mice were observed when the geometry of multiple-pairs of electrodes was arranged in the tumor at 45, 135, 225 and 325o and the longest exposure time. In addition, highest direct current overall effectiveness (above 66%) was observed for this EChT scheme. CONCLUSIONS: It is concluded that electrochemical therapy may be potentially addressed to highly aggressive and metastic primary F3II murine mammary carcinoma and the modified Gompertz equation may be used to fit data of this direct current treated carcinoma. Additionally, electrochemical therapy effectiveness depends on the exposure time, geometry of multiple-electrodes and ratio between the direct current intensity applied and the polarization current induced in the tumor.


Assuntos
Carcinoma , Neoplasias Mamárias Experimentais , Animais , Eletrodos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Modelos Teóricos , Estudos Retrospectivos
5.
Arch Biochem Biophys ; 679: 108220, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31812669

RESUMO

Quiescent and contractile VSMC can switch to proliferative and migratory phenotype in response to growth factors and cytokines, an effect underscored by Nox family NADPH oxidases, particularly Nox1. We previously showed that quiescin/sulfhydryl oxidase 1 (QSOX1) has a role in neointima formation in balloon-injured rat carotid. Here, we investigated the intracellular redox mechanisms underlying these effects in primary VSMC. Our results show that exogenous incubation with wild type QSOX1b (wt QSOX), or with secreted QSOX1, but not with the inactive C452S QSOX 1b (C452S QSOX) or secreted inactive C455S QSOX1, induces VSMC migration and chemotaxis. PEG-catalase (PEG-CAT) prevented, while PEG-superoxide dismutase (PEG-SOD) increased migration induced by wt QSOX. Moreover, wt QSOX-induced migration was abrogated in NOX1-null VSMC. In contrast, both wt QSOX and C452S QSOX, and both secreted QSOX1 and C455S QSOX1, induce cell proliferation. Such effect was unaltered by PEG-CAT, while being inhibited by PEG-SOD. However, QSOX1-induced proliferation was not significantly affected in NOX1-null VSMC, compared with WT VSMC. These results indicate that hydrogen peroxide and superoxide mediate, respectively, migration and proliferation. However, Nox1 was required only for QSOX1-induced migration. In parallel, QSOX1-induced proliferation was independent of its redox activity, although mediated by intracellular superoxide.


Assuntos
Movimento Celular , Músculo Liso Vascular/citologia , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Animais , Proliferação de Células , Células HEK293 , Humanos , Peróxido de Hidrogênio/metabolismo , Espaço Intracelular/metabolismo , Camundongos , NADPH Oxidase 1/metabolismo , Oxirredução/efeitos dos fármacos , Superóxidos/metabolismo
6.
Horm Behav ; 120: 104690, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31954709

RESUMO

Changes to neonatal nutrition result in long-lasting impairments in energy balance, which may be described as metabolic programing. Astrocytes, which are interconnected by gap junctions, have emerged as important players in the hypothalamic control of food intake. In order to study the effects of nutritional programming on glial morphology and protein expression, cross-fostered male Wistar rats at postnatal day 3 were assigned to three groups based on litter size: small litter (3 pups per dam, SL), normal litter (10 pups per dam, NL), and large litter (16 pups per dam, LL). Rats from the SL group exhibited higher body weight throughout the study and hyperphagia after weaning. LL animals exhibited hyperphagia, high energy efficiency and catch-up of body weight after weaning. Both the SL and LL groups at postnatal day 60 (PN60) exhibited increased levels of plasma leptin, the Lee index (as an index of obesity), adiposity content, immunoreactivity toward T-cell protein tyrosine phosphatase (TCPTP), and glial fibrillary acidic protein (GFAP) in the arcuate nucleus (ARC) of the hypothalamus. Astrocyte morphology was altered in the ARC of SL and LL animals, and this effect occurred in parallel with a reduction in immunoreactivity toward connexin 30 (CX30). The data obtained demonstrate that both neonatal over- and underfeeding promote not only alterations in the metabolic status but also morphological changes in glial cells in parallel with increasing TCPTP and changes in connexin expression.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Conexinas/genética , Gliose/etiologia , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Adiposidade/fisiologia , Animais , Animais Recém-Nascidos , Conexinas/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Gliose/genética , Gliose/metabolismo , Hiperfagia/complicações , Hiperfagia/genética , Hiperfagia/metabolismo , Hiperfagia/patologia , Hipotálamo/metabolismo , Tamanho da Ninhada de Vivíparos/fisiologia , Masculino , Obesidade/complicações , Obesidade/genética , Obesidade/metabolismo , Obesidade/patologia , Gravidez , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Ratos , Ratos Wistar , Fatores Sexuais , Fatores de Tempo
7.
Arch Microbiol ; 202(7): 2005-2012, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32436040

RESUMO

Grasses of the Urochloa genus have been widely used in crop-livestock integration systems or as cover crops in no-till systems such as in rotation with maize. Some species of Urochloa have mechanisms to reduce nitrification. However, the responses of microbial functions in crop-rotation systems with grasses and its consequence on soil N dynamics are not well-understood. In this study, the soil nitrification potential and the abundance of ammonifying microorganisms, total bacteria and total archaea (16S rRNA gene), nitrogen-fixing bacteria (NFB, nifH), ammonia-oxidizing bacteria (AOB, amoA) and archaea (AOA, amoA) were assessed in soil cultivated with ruzigrass (Urochloa ruziziensis), palisade grass (Urochloa brizantha) and Guinea grass (Panicum maximum). The abundance of ammonifying microorganisms was not affected by ruzigrass. Ruzigrass increased the soil nitrification potential compared with palisade and Guinea grass. Ruzigrass increased the abundance of N-fixing microorganisms at the middle and late growth stages. The abundances of nitrifying microorganisms and N-fixers in soil were positively correlated with the soil N-NH4+ content. Thus, biological nitrogen fixation might be an important input of N in systems of rotational production of maize with forage grasses. The abundance of microorganisms related to ammonification, nitrification and nitrogen fixing and ammonia-oxidizing archea was related to the development stage of the forage grass.


Assuntos
Agricultura , Produtos Agrícolas/microbiologia , Ciclo do Nitrogênio/genética , Microbiologia do Solo , Amônia/metabolismo , Archaea/genética , Bactérias/genética , Nitrificação , Nitrogênio/metabolismo , Oxirredução , RNA Ribossômico 16S/genética , Solo/química , Zea mays
8.
Am J Physiol Endocrinol Metab ; 316(1): E121-E134, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30376348

RESUMO

Hypothalamic neurons detect changes in circulating hormones such as leptin and insulin and put forward outputs to sustain energy and glucose homeostasis. Because leptin and insulin receptors colocalize in ~40-60% of neurons in the hypothalamus, we characterized the metabolic phenotype of mice with selective deletion of the insulin receptor (InsR) in LepR cells. LRΔInsR mice presented no difference in body weight and insulin levels but increased fat mass. In the light phase, LRΔInsR mice exhibited increased food intake, locomotor activity, carbon dioxide production, and respiratory exchange rate. These mice showed reduced fat oxidation and reduced expression of cluster of differentiation 36 and AMP-activated protein kinase-α1 in the liver, increased glucose oxidation in the light phase, and overall reduced basal glucose levels. To verify the impact of InsR deletion in LepR cells in obesity, we generated ob/ ob InsRfl, ob/ ob LRcre, and ob/ ob LRΔInsR mice. The ob/ ob LRΔInsR mice had higher body weight, fat mass, and expression of genes related to fat metabolism in the liver. No difference in food intake despite increased neuropeptide Y and agouti-related peptide expression, and no difference in energy expenditure, fat, or glucose oxidation was found in ob/ ob LRΔInsR compared with LRcre or LRΔInsR controls. Remarkably, basal glucose levels were reduced, and the expression of genes associated with glucose metabolism in the liver was higher. Insulin signaling in LepR cells is required for the proper fat and glucose oxidation. These effects are independent of leptin given that the leptin-deficient ob/ ob LRΔInsR mice also presented reduced glycemia and higher adiposity. The mechanisms underlying these responses remain to be unveiled.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Leptina/metabolismo , Neurônios/metabolismo , Obesidade/metabolismo , Receptor de Insulina/genética , Receptores para Leptina/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Antígenos CD36/metabolismo , Metabolismo Energético , Feminino , Deleção de Genes , Homeostase , Hiperinsulinismo/metabolismo , Hipotálamo/citologia , Hipotálamo/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Obesos
9.
Horm Behav ; 93: 166-174, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28576646

RESUMO

Acute administration of lipopolysaccharide (LPS) from Gram-negative bacteria induces hypophagia. However, the repeated administration of LPS leads to desensitization of hypophagia, which is associated with increased hypothalamic p-AMPK expression. Because ghrelin and endocannabinoids modulate AMPK activity in the hypothalamus, we hypothesized that these neuromodulators play a role in the reversal of tolerance to hypophagia in rats under long-term exposure to LPS. Male Wistar rats were treated with single (1 LPS, 100µg/kg body weight, ip) or repeated injections of LPS over 6days (6 LPS). Food intake was reduced in the 1 LPS, but not in the 6 LPS group. 6 LPS rats showed an increased serum concentration of acylated ghrelin and reduced ghrelin receptor mRNA expression in the hypothalamus. Ghrelin injection (40µg/kg body weight, ip) increased food intake, body weight gain, p-AMPK hypothalamic expression, neuropeptide Y (NPY) and Agouti related peptide (AgRP) mRNA expression in control animals (Saline). However, in 6 LPS rats, ghrelin did not alter these parameters. Central administration of a CB1R antagonist (AM251, 200ng/µl in 5µl/rat) induced hypophagia in 6 LPS animals, suggesting that the endocannabinoid system contributes to preserved food intake during LPS tolerance. In the presence of AM251, the ability of ghrelin to phosphorylate AMPK in the hypothalamus of 6 LPS group was restored, but not its orexigenic effect. Our data highlight that the orexigenic effects of ghrelin require CB1R signaling downstream of AMPK activation. Moreover, CB1R-mediated pathways contribute to the absence of hypophagia during repeated exposure to endotoxin.


Assuntos
Adenilato Quinase/metabolismo , Grelina/metabolismo , Hipotálamo/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Receptor CB1 de Canabinoide/metabolismo , Animais , Endocanabinoides/metabolismo , Hipotálamo/metabolismo , Masculino , Neuropeptídeo Y/metabolismo , Fosforilação/efeitos dos fármacos , Piperidinas/farmacologia , Pirazóis/farmacologia , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptores de Grelina/metabolismo , Transdução de Sinais/efeitos dos fármacos
10.
Int J Mol Sci ; 18(7)2017 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-28677618

RESUMO

Metabolic endotoxemia contributes to low-grade inflammation in obesity, which causes insulin resistance due to the activation of intracellular proinflammatory pathways, such as the c-Jun N-terminal Kinase (JNK) cascade in the hypothalamus and other tissues. However, it remains unclear whether the proinflammatory process precedes insulin resistance or it appears because of the development of obesity. Hypothalamic low-grade inflammation was induced by prolonged lipopolysaccharide (LPS) exposure to investigate if central insulin resistance is induced by an inflammatory stimulus regardless of obesity. Male Wistar rats were treated with single (1 LPS) or repeated injections (6 LPS) of LPS (100 µg/kg, IP) to evaluate the phosphorylation of the insulin receptor substrate-1 (IRS1), Protein kinase B (AKT), and JNK in the hypothalamus. Single LPS increased the expression of pIRS1, pAKT, and pJNK, whereas the repeated LPS treatment failed to recruit pIRS1 and pAKT. The 6 LPS treated rats showed increased total JNK and pJNK. The 6 LPS rats became unresponsive to the hypophagic effect induced by central insulin administration (12 µM/5 µL, ICV). Prolonged exposure to LPS (24 h) impaired the insulin-induced AKT phosphorylation and the translocation of the transcription factor forkhead box protein O1 (FoxO1) from the nucleus to the cytoplasm of the cultured hypothalamic GT1-7 cells. Central administration of the JNK inhibitor (20 µM/5 µL, ICV) restored the ability of insulin to phosphorylate IRS1 and AKT in 6 LPS rats. The present data suggest that an increased JNK activity in the hypothalamus underlies the development of insulin resistance during prolonged exposure to endotoxins. Our study reveals that weight gain is not mandatory for the development of hypothalamic insulin resistance and the blockade of proinflammatory pathways could be useful for restoring the insulin signaling during prolonged low-grade inflammation as seen in obesity.


Assuntos
Peso Corporal , Hipotálamo/metabolismo , Inflamação/etiologia , Inflamação/metabolismo , Resistência à Insulina , Lipopolissacarídeos/efeitos adversos , Animais , Modelos Animais de Doenças , Endotoxemia , Inflamação/patologia , Insulina/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Neurônios/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Transdução de Sinais
11.
Biochim Biophys Acta ; 1852(7): 1334-46, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25766108

RESUMO

Quiescin sulfhydryl oxidase 1 (QSOX1) is a flavoenzyme largely present in the extracellular milieu whose physiological functions and substrates are not known. QSOX1 has been implicated in the regulation of tumor cell survival, proliferation and migration, in addition to extracellular matrix (ECM) remodeling. However, data regarding other pathophysiological conditions are still lacking. Arterial injury by balloon catheter is an established model of post-angioplasty restenosis. This technique induces neointima formation due to migration and proliferation of vascular smooth muscle cells (VSMC), followed by ECM synthesis and remodeling. Here, we show that QSOX1 knockdown inhibited VSMC migration and proliferation in vitro. In contrast, QSOX1 overexpression stimulated these processes. While migration could be induced by the incubation of cells with the active recombinant QSOX1, proliferation was induced by addition of the active and also of an inactive mutant QSOX1 protein. The proliferation induced by both recombinants was independent of intracellular hydrogen peroxide and dependent of the MEK/ERK pathway. To recapitulate in vivo VSMC pathophysiology, balloon-induced arterial injury was performed. The expression of QSOX1 in the neointimal layer of balloon-injured rat carotids was high and peaked at 14 days post-injury. In vivo QSOX1 knockdown led to a significant decrease in PCNA expression at day 14 post-injury and a decreased intima/media area ratio at day 21 post-injury, compared with scrambled siRNA transfection. In summary, our findings demonstrate that QSOX1 induces VSMC migration and proliferation in vitro and contributes to neointima thickening in balloon-injured rat carotids.


Assuntos
Movimento Celular , Proliferação de Células , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Neointima/metabolismo , Tiorredoxinas/metabolismo , Animais , Artérias Carótidas/patologia , Artérias Carótidas/cirurgia , Células Cultivadas , Peróxido de Hidrogênio/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Músculo Liso Vascular/citologia , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso/fisiologia , Ratos , Ratos Wistar , Tiorredoxinas/genética
12.
Am J Physiol Regul Integr Comp Physiol ; 310(11): R1258-66, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27101301

RESUMO

Leptin signals energy sufficiency to the reproductive hypothalamic-pituitary-gonadal (HPG) axis. Studies using genetic models have demonstrated that hypothalamic neurons are major players mediating these effects. Leptin receptor (LepR) is also expressed in the pituitary gland and in the gonads, but the physiological effects of leptin in these sites are still unclear. Female mice with selective deletion of LepR in a subset of gonadotropes show normal pubertal development but impaired fertility. Conditional deletion approaches, however, often result in redundancy or developmental adaptations, which may compromise the assessment of leptin's action in gonadotropes for pubertal maturation. To circumvent these issues, we adopted a complementary genetic approach and assessed if selective reexpression of LepR only in gonadotropes is sufficient to enable puberty and improve fertility of LepR null female mice. We initially assessed the colocalization of gonadotropin-releasing hormone receptor (GnRHR) and LepR in the HPG axis using GnRHR-IRES-Cre (GRIC) and LepR-Cre reporter (tdTomato or enhanced green fluorescent protein) mice. We found that GRIC and leptin-induced phosphorylation of STAT3 are expressed in distinct hypothalamic neurons. Whereas LepR-Cre was observed in theca cells, GRIC expression was rarely found in the ovarian parenchyma. In contrast, a subpopulation of gonadotropes expressed the LepR-Cre reporter gene (tdTomato). We then crossed the GRIC mice with the LepR null reactivable (LepR(loxTB)) mice. These mice showed an increase in FSH levels, but they remained in a prepubertal state. Together with previous findings, our data indicate that leptin-selective action in gonadotropes serves a role in adult reproductive physiology but is not sufficient to allow pubertal maturation in mice.


Assuntos
Fertilidade/fisiologia , Hormônio Foliculoestimulante/biossíntese , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Puberdade/fisiologia , Receptores LHRH/metabolismo , Receptores para Leptina/metabolismo , Animais , Células Cultivadas , Camundongos , Camundongos Knockout , Receptores para Leptina/genética
13.
Am J Physiol Endocrinol Metab ; 308(1): E40-50, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25352433

RESUMO

Leptin resistance is induced by the feedback inhibitors tyrosine phosphatase-1B (PTP1B) and decreased Src homology 2 domain-containing tyrosine phosphatase-2 (SHP-2) signaling. To investigate the participation of PTP1B and SHP-2 in LPS-induced leptin resistance, we injected repeated (6-LPS) intraperitoneal LPS doses (100 µg/kg ip) for comparison with a single (1-LPS) treatment and evaluated the expression of SHP-2, PTP1B, p-ERK1/2, and p-STAT3 in the hypothalamus of male Wistar rats. The single LPS treatment increased the expression of p-STAT3 and PTP1B but not SHP-2. The repeated LPS treatment reduced SHP-2, increased PTP1B, and did not change p-STAT3. We observed that the PTP1B expression induced by the endotoxin was highly colocalized with leptin receptor cells in the hypothalamus of LepRb-IRES-Cre-tdTomato reporter mice. The single, but not the repeated, LPS treatment decreased the food intake and body weight. Leptin had no stimulatory effect on the hypophagia, body weight loss, or pSTAT3 expression in 6-LPS rats, indicating leptin unresponsiveness. Notably, the PTP1B inhibitor (3.0 nmol/rat in 5 µl icv) restored the LPS-induced hypophagia in 6-LPS rats and restored the ability of leptin to reduce food intake and body weight as well as to phosphorylate STAT3 in the arcuate, paraventricular, and ventromedial nuclei of the hypothalamus. The present data suggest that an increased PTP1B expression in the hypothalamus underlies the development of leptin resistance during repeated exposure to LPS. Our findings contribute to understanding the mechanisms involved in leptin resistance during low-grade inflammation as seen in obesity.


Assuntos
Resistência a Medicamentos , Inflamação/metabolismo , Leptina/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/fisiologia , Animais , Resistência a Medicamentos/efeitos dos fármacos , Resistência a Medicamentos/genética , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Obesidade/genética , Obesidade/metabolismo , Ratos , Ratos Wistar , Receptores para Leptina/genética , Receptores para Leptina/metabolismo
14.
Am J Physiol Regul Integr Comp Physiol ; 306(1): R34-44, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24226027

RESUMO

Hypophagia induced by inflammation is associated with Janus kinase (JAK)-2/signal transducer and activator of transcription (STAT) 3 signaling pathway, and leptin-mediated hypophagia is also mediated by JAK2-STAT3 pathway. We have previously reported that lipopolysaccharide (LPS) did not reduce food intake in leptin-resistant high-fat diet (HFD) rats but maintained body weight loss. We investigated whether changes in p-STAT3 expression in the hypothalamus and brain stem could account for the desensitization of hypophagia in HFD animals after a low LPS dose (100 µg/kg). Wistar rats fed standard diet (3.95 kcal/g) or HFD (6.3 kcal/g) for 8 wk were assigned into control diet-saline, control diet-LPS, HFD-saline, and HFD-LPS groups. LPS reduced feeding in the control diet but not HFD. This group showed no p-STAT3 expression in the paraventricular nucleus (PVN) and ventromedial hypothalamic nucleus (VMH), but sustained, though lower than control, p-STAT3 in the nucleus of the solitary tract (NTS) and raphe pallidus (RPa). LPS decreased body weight in HFD rats and increased Fos expression in the NTS. LPS increased body temperature, oxygen consumption, and energy expenditure in both control diet and HFD rats, and this response was more pronounced in HFD-LPS group. Brown adipose tissue (BAT) thermogenesis and increased energy expenditure seem to contribute to body weight loss in HFD-LPS. This response might be related with increased brain stem activation. In conclusion, LPS activates STAT3-mediated pathway in the hypothalamus and brain stem, leading to hypophagia, however, LPS effects on food intake, but not body weight loss, are abolished by leptin resistance induced by HFD. The preserved STAT3 phosphorylation in the brain stem suggests that unresponsiveness to LPS on STAT3 activation under HFD might be selective to the hypothalamus.


Assuntos
Dieta Hiperlipídica , Hipotálamo/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Peso Corporal/fisiologia , Gorduras na Dieta/metabolismo , Ingestão de Alimentos/fisiologia , Hipotálamo/metabolismo , Leptina/metabolismo , Masculino , Ratos , Ratos Wistar , Transdução de Sinais/fisiologia
15.
Exp Physiol ; 98(10): 1495-504, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23813803

RESUMO

Anorexia is a common clinical manifestation of primary adrenal gland failure. Adrenalectomy (ADX)-induced hypophagia is reversed by oxytocin (OT) receptor antagonist and is associated with increased activation of satiety-related responses in the nucleus of the solitary tract (NTS). This study evaluated OT projections from the paraventricular nucleus of the hypothalamus (PVN) to the NTS after ADX and the effect of pretreatment with intracerebroventricular injection of an OT receptor antagonist ([d(CH2)5,Tyr(Me)(2),Orn(8)]-vasotocin; OVT) on the activation of NTS neurons induced by feeding in adrenalectomized rats. Adrenalectomized animals showed higher OT labelling in the NTS than the sham and the ADX with corticosterone replacement (ADX + B) groups. Adrenalectomized animals exhibited co-localization of the anterograde tracer Phaseolus vulgaris leucoagglutinin and OT in axons in the NTS as well as OT fibres apposing NTS neurons activated by refeeding. After vehicle pretreatment, compared with fasting, refeeding increased the numbers of Fos- and Fos + TH-immunoreactive neurons in the NTS in sham, ADX and ADX + B groups, with a higher number of these immunolabelled neurons in adrenalectomized animals. Compared with fasting conditions, refeeding also increased the activation of NTS neurons in OVT-pretreated sham, ADX and ADX + B groups, but there was no difference among the three experimental groups. These data demonstrate that OT is upregulated in projections to the NTS following ADX and that OT receptor antagonist reverses the greater activation of NTS neurons induced by feeding after ADX. The data indicate that OT pathways to the NTS contribute to higher satiety-related responses and, thus, to reduce meal size in primary adrenal insufficiency.


Assuntos
Doença de Addison/fisiopatologia , Ocitocina/fisiologia , Resposta de Saciedade/efeitos dos fármacos , Núcleo Solitário/fisiologia , Adrenalectomia , Animais , Ingestão de Alimentos/fisiologia , Fito-Hemaglutininas/farmacologia , Ratos Sprague-Dawley , Receptores de Ocitocina/antagonistas & inibidores
16.
Aging Cell ; 21(10): e13708, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36088647

RESUMO

Age-related hearing loss (ARHL) is the most prevalent sensory deficit in the elderly. This progressive pathology often has psychological and medical comorbidities, including social isolation, depression, and cognitive decline. Despite ARHL's enormous societal and economic impact, no therapies to prevent or slow its progression exist. Loss of synapses between inner hair cells (IHCs) and spiral ganglion neurons (SGNs), a.k.a. IHC synaptopathy, is an early event in cochlear aging, preceding neuronal and hair cell loss. To determine if age-related IHC synaptopathy can be prevented, and if this impacts the time-course of ARHL, we tested the effects of cochlear overexpression of neurotrophin-3 (Ntf3) starting at middle age. We chose Ntf3 because this neurotrophin regulates the formation of IHC-SGN synapses in the neonatal period. We now show that triggering Ntf3 overexpression by IHC supporting cells starting in middle age rapidly increases the amplitude of sound-evoked neural potentials compared with age-matched controls, indicating that Ntf3 produces a positive effect on cochlear function when the pathology is minimal. Furthermore, near the end of their lifespan, Ntf3-overexpressing mice have milder ARHL, with larger sound-evoked potentials along the ascending auditory pathway and reduced IHC synaptopathy compared with age-matched controls. Our results also provide evidence that an age-related decrease in cochlear Ntf3 expression contributes to ARHL and that Ntf3 supplementation could serve as a therapeutic for this prevalent disorder. Furthermore, these findings suggest that factors that regulate synaptogenesis during development could prevent age-related synaptopathy in the brain, a process involved in several central nervous system degenerative disorders.


Assuntos
Células Ciliadas Auditivas Internas , Perda Auditiva , Animais , Cóclea/patologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Camundongos , Gânglio Espiral da Cóclea/patologia , Sinapses/patologia
17.
Front Cell Infect Microbiol ; 12: 1044665, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36699729

RESUMO

Introduction: Leishmaniasis is a neglected tropical disease, with approximately 1 million new cases and 30,000 deaths reported every year worldwide. Given the lack of adequate medication for treating leishmaniasis, drug repositioning is essential to save time and money when searching for new therapeutic approaches. This is particularly important given leishmaniasis's status as a neglected disease. Available treatments are still far from being fully effective for treating the different clinical forms of the disease. They are also administered parenterally, making it challenging to ensure complete treatment, and they are extremely toxic, in some cases, causing death. Triclabendazole (TCBZ) is a benzimidazole used to treat fasciolosis in adults and children. It presents a lower toxicity profile than amphotericin B (AmpB) and is administered orally, making it an attractive candidate for treating other parasitoses. The mechanism of action for TCBZ is not yet well understood, although microtubules or polyamines could potentially act as a pharmacological target. TCBZ has already shown antiproliferative activity against T. cruzi, T. brucei, and L. infantum. However, further investigations are still necessary to elucidate the mechanisms of action of TCBZ. Methods: Cytotoxicity assay was performed by MTT assay. Cell inhibition (CI) values were obtained according to the equation CI = (O.D treatment x 100/O.D. negative control). For Infection evaluation, fixated cells were stained with Hoechst and read at Operetta High Content Imaging System (Perkin Elmer). For growth curves, cell culture absorbance was measured daily at 600 nm. For the synergism effect, Fractional Inhibitory Concentrations (FICs) were calculated for the IC50 of the drugs alone or combined. Mitochondrial membrane potential (DYm), cell cycle, and cell death analysis were evaluated by flow cytometry. Reactive oxygen species (ROS) and lipid quantification were also determined by fluorimetry. Treated parasites morphology and ultrastructure were analyzed by electron microscopy. Results: The selectivity index (SI = CC50/IC50) of TCBZ was comparable with AmpB in promastigotes and amastigotes of Leishmania amazonensis. Evaluation of the cell cycle showed an increase of up to 13% of cells concentrated in S and G2, and morphological analysis with scanning electron microscopy showed a high frequency of dividing cells. The ultrastructural analysis demonstrated large cytoplasmic lipid accumulation, which could suggest alterations in lipid metabolism. Combined administration of TCBZ and AmpB demonstrated a synergistic effect in vitro against intracellular amastigote forms with cSFICs of 0.25. Conclusions: Considering that TCBZ has the advantage of being inexpensive and administrated orally, our results suggest that TCBZ, combined with AmpB, is a promising candidate for treating leishmaniasis with reduced toxicity.


Assuntos
Antiprotozoários , Leishmania , Leishmaniose , Criança , Humanos , Anfotericina B , Triclabendazol/farmacologia , Triclabendazol/uso terapêutico , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Leishmaniose/parasitologia , Lipídeos/farmacologia
18.
Sci Rep ; 12(1): 17267, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36241655

RESUMO

Like all receptor tyrosine kinases (RTKs), ErbB4 signals through a canonical signaling involving phosphorylation cascades. However, ErbB4 can also signal through a non-canonical mechanism whereby the intracellular domain is released into the cytoplasm by regulated intramembrane proteolysis (RIP) and translocates to the nucleus where it regulates transcription. These different signaling mechanisms depend on the generation of alternative spliced isoforms, a RIP cleavable ErbB4-JMa and an uncleavable ErbB4-JMb. Non-canonical signaling by ErbB4-JMa has been implicated in the regulation of brain, heart, mammary gland, lung, and immune cell development. However, most studies on non-canonical ErbB4 signaling have been performed in vitro due to the lack of an adequate mouse model. We created an ErbB4-JMa specific knock out mouse and demonstrate that RIP-dependent, non-canonical signaling by ErbB4-JMa is required for the regulation of GFAP expression during cortical development. We also show that ErbB4-JMa signaling is not required for the development of the heart, mammary glands, sensory ganglia. Furthermore, we identify genes whose expression during cortical development is regulated by ErbB4, and show that the expression of three of them, CRYM and DBi, depend on ErbB4-JMa whereas WDFY1 relies on ErbB4-JMb. Thus, we provide the first animal model to directly study the roles of ErbB4-JMa and non-canonical ErbB4 signaling in vivo.


Assuntos
Transdução de Sinais , Tirosina , Animais , Camundongos , Camundongos Knockout , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptor ErbB-4/genética , Receptor ErbB-4/metabolismo , Tirosina/metabolismo
19.
Am J Physiol Endocrinol Metab ; 300(5): E858-69, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21343543

RESUMO

Acute exposure to bacterial lipopolysaccharide (LPS) is a potent inducer of immune response as well as hypophagia. Nevertheless, desensitization of responses to LPS occurs during long-term exposure to endotoxin. We induced endotoxin tolerance, injecting repeated (6LPS) LPS doses compared with single (1LPS) treatment. 1LPS, but not 6LPS group, showed decreased food intake and body weight, which was associated with an increased plasma leptin and higher mRNA expression of OB-Rb, MC4R, and SOCS3 in the hypothalamus. Hypophagia induced by 1LPS was associated with lower levels of 2-arachidonoylglycerol (2-AG), increased number of p-STAT3 neurons, and decreased AMP-activated protein kinase (AMPK) activity. Desensitization of hypophagia in the 6LPS group was related to high 2-AG, with no changes in p-STAT3 or increased p-AMPK. Leptin decreased food intake, body weight, 2-AG levels, and AMPK activity and enhanced p-STAT3 in control rats. However, leptin had no effects on 2-AG, p-STAT3, or p-AMPK in the 1LPS and 6LPS groups. Rats treated with HFD to induce leptin resistance showed neither hypophagia nor changes in p-STAT3 after 1LPS, suggesting that leptin and LPS recruit a common signaling pathway in the hypothalamus to modulate food intake reduction. Desensitization of hypophagia in response to repeated exposure to endotoxin is related to an inability of leptin to inhibit AMPK phosphorylation and 2-AG production and activate STAT3. SOCS3 is unlikely to underlie this resistance to leptin signaling in the endotoxin tolerance. The present model of prolonged inflammatory challenge may contribute to further investigations on mechanisms of leptin resistance.


Assuntos
Ingestão de Alimentos/fisiologia , Inflamação/fisiopatologia , Leptina/fisiologia , Animais , Ácidos Araquidônicos/fisiologia , Peso Corporal/efeitos dos fármacos , Peso Corporal/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Dieta , Gorduras na Dieta/farmacologia , Ingestão de Alimentos/efeitos dos fármacos , Endocanabinoides , Endotoxinas/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Glicerídeos/fisiologia , Imuno-Histoquímica , Inflamação/induzido quimicamente , Interleucina-10/biossíntese , Interleucina-10/genética , Leptina/sangue , Lipopolissacarídeos/farmacologia , Masculino , Fosforilação , Ratos , Ratos Wistar , Receptor Tipo 4 de Melanocortina/biossíntese , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/fisiologia , Receptores de Interleucina-10/biossíntese , Receptores de Interleucina-10/genética , Receptores para Leptina/biossíntese , Receptores para Leptina/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT3/biossíntese , Fator de Transcrição STAT3/genética , Transdução de Sinais/fisiologia , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina/biossíntese , Proteínas Supressoras da Sinalização de Citocina/genética
20.
Dev Neurobiol ; 81(5): 546-567, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33561889

RESUMO

The auditory system detects and encodes sound information with high precision to provide a high-fidelity representation of the environment and communication. In mammals, detection occurs in the peripheral sensory organ (the cochlea) containing specialized mechanosensory cells (hair cells) that initiate the conversion of sound-generated vibrations into action potentials in the auditory nerve. Neural activity in the auditory nerve encodes information regarding the intensity and frequency of sound stimuli, which is transmitted to the auditory cortex through the ascending neural pathways. Glial cells are critical for precise control of neural conduction and synaptic transmission throughout the pathway, allowing for the precise detection of the timing, frequency, and intensity of sound signals, including the sub-millisecond temporal fidelity is necessary for tasks such as sound localization, and in humans, for processing complex sounds including speech and music. In this review, we focus on glia and glia-like cells that interact with hair cells and neurons in the ascending auditory pathway and contribute to the development, maintenance, and modulation of neural circuits and transmission in the auditory system. We also discuss the molecular mechanisms of these interactions, their impact on hearing and on auditory dysfunction associated with pathologies of each cell type.


Assuntos
Vias Auditivas , Cóclea , Estimulação Acústica , Animais , Vias Auditivas/fisiologia , Axônios , Cóclea/fisiologia , Humanos , Mamíferos , Neuroglia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA