Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Org Biomol Chem ; 17(11): 3066, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30834407

RESUMO

Correction for 'The expanding spectrum of diketopiperazine natural product biosynthetic pathways containing cyclodipeptide synthases' by Paul Borgman et al., Org. Biomol. Chem., 2019, DOI: 10.1039/c8ob03063d.

2.
Org Biomol Chem ; 17(9): 2305-2314, 2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30688950

RESUMO

Microorganisms are remarkable chemists, with enzymes as their tools for executing multi-step syntheses to yield myriad natural products. Microbial synthetic aptitudes are illustrated by the structurally diverse 2,5-diketopiperazine (DKP) family of bioactive nonribosomal peptide natural products. Nonribosomal peptide synthetases (NRPSs) have long been recognized as catalysts for formation of DKP scaffolds from two amino acid substrates. Cyclodipeptide synthases (CDPSs) are more recently recognized catalysts of DKP assembly, employing two aminoacyl-tRNAs (aa-tRNAs) as substrates. CDPS-encoding genes are typically found in genomic neighbourhoods with genes encoding additional biosynthetic enzymes. These include oxidoreductases, cytochrome P450s, prenyltransferases, methyltransferases, and cyclases, which equip the DKP scaffold with groups that diversify chemical structures and confer biological activity. These tailoring enzymes have been characterized from nine CDPS-containing biosynthetic pathways to date, including four during the last year. In this review, we highlight these nine DKP pathways, emphasizing recently characterized tailoring reactions and connecting new developments to earlier findings. Featured pathways encompass a broad spectrum of chemistry, including the formation of challenging C-C and C-O bonds, regioselective methylation, a unique indole alkaloid DKP prenylation strategy, and unprecedented peptide-nucleobase bond formation. These CDPS-containing pathways also provide intriguing models of metabolic pathway evolution across related and divergent microorganisms, and open doors to synthetic biology approaches for generation of DKP combinatorial libraries. Further, bioinformatics analyses support that much unique genetically encoded DKP tailoring potential remains unexplored, suggesting opportunities for further expansion of Nature's biosynthetic spectrum. Together, recent studies of DKP pathways demonstrate the chemical ingenuity of microorganisms, highlight the wealth of unique enzymology provided by bacterial biosynthetic pathways, and suggest an abundance of untapped biosynthetic potential for future exploration.


Assuntos
Bactérias/enzimologia , Produtos Biológicos/metabolismo , Vias Biossintéticas , Dicetopiperazinas/metabolismo , Peptídeo Sintases/metabolismo , Peptídeos Cíclicos/metabolismo , Bactérias/química , Bactérias/genética , Bactérias/metabolismo , Produtos Biológicos/química , Dicetopiperazinas/química , Modelos Moleculares , Família Multigênica , Peptídeo Sintases/genética , Peptídeos Cíclicos/química , Peptídeos Cíclicos/genética , Especificidade por Substrato
3.
Blood Adv ; 6(23): 6040-6050, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-35939781

RESUMO

Cancer outcomes with chemotherapy are inferior in patients of minority racial/ethnic groups and those with obesity. Chimeric antigen receptor (CAR) T-cell therapy has transformed outcomes for relapsed/refractory hematologic malignancies, but whether its benefits extend commensurately to racial/ethnic minorities and patients with obesity is poorly understood. With a primary focus on patients with B-cell acute lymphoblastic leukemia (B-ALL), we retrospectively evaluated the impact of demographics and obesity on CAR T-cell therapy outcomes in adult and pediatric patients with hematologic malignancies treated with CAR T-cell therapy across 5 phase 1 clinical trials at the National Cancer Institute from 2012 to 2021. Among 139 B-ALL CAR T-cell infusions, 28.8% of patients were Hispanic, 3.6% were Black, and 29.5% were overweight/obese. No significant associations were found between race, ethnicity, or body mass index (BMI) and complete remission rates, neurotoxicity, or overall survival. Hispanic patients were more likely to experience severe cytokine release syndrome compared with White non-Hispanic patients even after adjusting for leukemia disease burden and age (odds ratio, 4.5; P = .001). A descriptive analysis of patients with multiple myeloma (n = 24) and non-Hodgkin lymphoma (n = 23) displayed a similar pattern to the B-ALL cohort. Our findings suggest CAR T-cell therapy may provide substantial benefit across a range of demographics characteristics, including for those populations who are at higher risk for chemotherapy resistance and relapse. However, toxicity profiles may vary. Therefore, efforts to improve access to CAR therapy for underrepresented populations and elucidate mechanisms of differential toxicity among demographic groups should be prioritized.


Assuntos
Neoplasias Hematológicas , Linfoma de Células B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores de Antígenos Quiméricos , Adulto , Humanos , Criança , Imunoterapia Adotiva/efeitos adversos , Antígenos CD19 , Etnicidade , Estudos Retrospectivos , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Linfoma de Células B/tratamento farmacológico , Neoplasias Hematológicas/tratamento farmacológico , Recidiva , Obesidade/complicações , Obesidade/terapia
4.
Front Cardiovasc Med ; 7: 142, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32903434

RESUMO

Background: Our previous GWAS identified genetic variants at six novel loci that were associated with a decline in left ventricular ejection fraction (LVEF), p < 1 × 10-5 in 1,191 early breast cancer patients from the N9831 clinical trial of chemotherapy plus trastuzumab. In this study we sought replication of these loci. Methods: We tested the top loci from the GWAS for association with chemotherapy-related heart failure (CRHF) using 26 CRHF cases from N9831 and 984 patients from the Mayo Clinic Biobank which included CRHF cases (N = 12) and control groups of patients treated with anthracycline +/- trastuzumab without HF (N = 282) and patients with HF that were never treated with anthracycline or trastuzumab (N = 690). We further examined associated loci in the context of gene expression and rare coding variants using a TWAS approach in heart left ventricle and Sanger sequencing, respectively. Doxorubicin-induced apoptosis and cardiomyopathy was modeled in human iPSC-derived cardiomyocytes and endothelial cells and a mouse model, respectively, that were pre-treated with GsMTx-4, an inhibitor of TRPC6. Results: TRPC6 5' flanking variant rs57242572-T was significantly more frequent in cases compared to controls, p = 0.031, and rs61918162-T showed a trend for association, p = 0.065. The rs61918162 T-allele was associated with higher TRPC6 expression in the heart left ventricle. We identified a single TRPC6 rare missense variant (rs767086724, N338S, prevalence 0.0025% in GnomAD) in one of 38 patients (2.6%) with CRHF. Pre-treatment of cardiomyocytes and endothelial cells with GsMTx4 significantly reduced doxorubicin-induced apoptosis. Similarly, mice treated with GsMTx4 had significantly improved doxorubicin-induced cardiac dysfunction. Conclusions: Genetic variants that are associated with increased TRPC6 expression in the heart and rare TRPC6 missense variants may be clinically useful as risk factors for CRHF. GsMTx-4 may be a cardioprotective agent in patients with TRPC6 risk variants. Replication of the genetic associations in larger well-characterized samples and functional studies are required.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA