Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Mol Pharm ; 17(5): 1608-1620, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32233501

RESUMO

This work analyzes the immunogenicity of six genetically engineered constructs based on elastin-like recombinamers (ELRs) fused to the Gn glycoprotein from Rift Valley fever virus (RVFV). Upon transfection, all constructs showed no effect on cell viability. While fusion constructs including ELR blocks containing hydrophobic amino acids (alanine or isoleucine) did not increase the expression of viral Gn in eukaryotic cells, glutamic acid- or valine-rich fusion proteins showed enhanced expression levels compared with the constructs encoding the viral antigen alone. However, in vivo DNA plasmid immunization assays determined that the more hydrophobic constructs reduced viremia levels after RVFV challenge to a higher extent than glutamic- or valine-rich encoding plasmids and were better inducers of cellular immunity as judged by in vitro restimulation experiments. Although the Gn-ELR fusion constructs did not surpass the protective efficacy of a plasmid vaccine expressing nonfused Gn, our results warrant further experiments directed to take advantage of the immunomodulatory potential of ELR biomaterials for improving vaccines against infectious diseases.


Assuntos
Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Doenças dos Ovinos , Vacinas de DNA , Vacinas Virais , Animais , Anticorpos Antivirais , Elastina/genética , Febre do Vale de Rift/prevenção & controle , Vírus da Febre do Vale do Rift/genética , Vírus da Febre do Vale do Rift/metabolismo , Ovinos , Doenças dos Ovinos/prevenção & controle , Valina , Vacinas Virais/genética
2.
Vet Res ; 51(1): 59, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32357948

RESUMO

We report the generation, characterization and epitope mapping of a panel of 26 monoclonal antibodies (MAbs) against the VP1 capsid protein of feline calicivirus (FCV). Two close but distinct linear epitopes were identified at the capsid outermost surface (P2 subdomain) of VP1, within the E5'HVR antigenic hypervariable region: one spanning amino acids 431-435 (PAGDY), highly conserved and recognized by non-neutralizing MAbs; and a second epitope spanning amino acids 445-451 (ITTANQY), highly variable and recognized by neutralizing MAbs. These antibodies might be valuable for diagnostic applications, as well as for further research in different aspects of the biology of FCV.


Assuntos
Anticorpos Monoclonais/metabolismo , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/metabolismo , Calicivirus Felino/química , Capsídeo/química , Epitopos/química
3.
Artigo em Inglês | MEDLINE | ID: mdl-31085519

RESUMO

Rift Valley fever virus (RVFV) is an emerging, mosquito-borne, zoonotic pathogen with recurrent outbreaks taking a considerable toll in human deaths in many African countries, for which no effective treatment is available. In cell culture studies and with laboratory animal models, the nucleoside analogue favipiravir (T-705) has demonstrated great potential for the treatment of several seasonal, chronic, and emerging RNA virus infections in humans, suggesting applicability to control some viral outbreaks. Treatment with favipiravir was shown to reduce the infectivity of Rift Valley fever virus both in cell cultures and in experimental animal models, but the mechanism of this protective effect is not understood. In this work, we show that favipiravir at concentrations well below the toxicity threshold estimated for cells is able to extinguish RVFV from infected cell cultures. Nucleotide sequence analysis has documented RVFV mutagenesis associated with virus extinction, with a significant increase in G to A and C to U transition frequencies and a decrease of specific infectivity, hallmarks of lethal mutagenesis.


Assuntos
Amidas/farmacologia , Mutagênese/genética , Pirazinas/farmacologia , Vírus da Febre do Vale do Rift/genética , Animais , Sequência de Bases , Linhagem Celular , Chlorocebus aethiops , Culicidae , Mutagênese/efeitos dos fármacos , RNA Viral/genética , Vírus da Febre do Vale do Rift/efeitos dos fármacos , Células Vero
4.
Nanomedicine ; 12(5): 1185-92, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26970026

RESUMO

In this work we have tested the potential antiviral activity of silver nanoparticles formulated as Argovit™ against Rift Valley fever virus (RVFV). The antiviral activity of Argovit was tested on Vero cell cultures and in type-I interferon receptor deficient mice (IFNAR (-/-) mice) by two different approaches: (i) different dilutions of Argovit were added to previously infected cells or administrated to animals infected with a lethal dose of virus; (ii) virus was pre-incubated with different dilutions of Argovit before inoculation in mice or cells. Though the ability of silver nanoparticles to control an ongoing RVFV infection in the conditions tested was limited, the incubation of virus with Argovit before the infection led to a reduction of the infectivity titers both in vitro and in vivo. These results reveal the potential application of silver nanoparticles to control the infectivity of RVFV, which is an important zoonotic pathogen.


Assuntos
Antivirais/farmacologia , Nanopartículas/uso terapêutico , Vírus da Febre do Vale do Rift/efeitos dos fármacos , Prata/uso terapêutico , Animais , Camundongos , Febre do Vale de Rift/prevenção & controle , Vírus da Febre do Vale do Rift/patogenicidade
5.
PLoS Negl Trop Dis ; 18(8): e0012011, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39159263

RESUMO

Rift Valley fever (RVF) is an important zoonotic viral disease affecting several species of domestic and wild ruminants, causing major economic losses and dozens of human deaths in various geographical areas of Africa, where it is endemic. Although it is not present in Europe, there is a risk of its introduction and spread linked to globalisation and climate change. At present, the only measure that could help to prevent the disease is vaccination of flocks in areas at risk of RVF. Available live attenuated vaccines are an effective means of controlling the disease, but their use is often questioned due to residual virulence, particularly in susceptible hosts such as pregnant sheep. On the other hand, no vaccine is currently licensed for use in humans. The development of safe and effective vaccines is therefore a major area of research. In previous studies, we selected under selective mutagenic pressure a highly attenuated RVFV 56/74 virus variant called 40Fp8. This virus showed an extremely attenuated phenotype in both wild-type and immunodeficient A129 (IFNARKO) mice, yet was still able to induce protective immunity after a single inoculation, thus supporting its use as a safe, live attenuated vaccine. To further investigate its safety, in this work we have analysed the attenuation level of 40Fp8 in immunosuppressed mice (A129) when administered by the intranasal route, and compared it with other attenuated RVF viruses that are the basis of vaccines in use or in development. Our results show that 40Fp8 has a much higher attenuated level than these other viruses and confirm its potential as a candidate for safe RVF vaccine development.


Assuntos
Administração Intranasal , Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Vacinas Atenuadas , Vacinas Virais , Animais , Febre do Vale de Rift/prevenção & controle , Febre do Vale de Rift/imunologia , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/administração & dosagem , Vírus da Febre do Vale do Rift/imunologia , Camundongos , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Feminino , Vacinação/métodos , Anticorpos Antivirais/sangue
6.
Viruses ; 16(1)2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38257787

RESUMO

The introduction of three single nucleotide mutations into the genome of the virulent RVFV ZH548 strain allows for the rescue of a fully attenuated virus in mice (ZH548-rA2). These mutations are located in the viral genes encoding the RdRp and the non-structural protein NSs. This paper shows the results obtained after the subcutaneous inoculation of ZH548-rA2 in adult sheep and the subsequent challenge with the parental virus (ZH548-rC1). Inoculation with the ZH548-rA2 virus caused no detectable clinical or pathological effect in sheep, whereas inoculation of the parental rC1 virus caused lesions compatible with viral infection characterised by the presence of scattered hepatic necrosis. Viral infection was confirmed via immunohistochemistry, with hepatocytes within the necrotic foci appearing as the main cells immunolabelled against viral antigen. Furthermore, the inoculation of sheep with the rA2 virus prevented the liver damage expected after rC1 virus inoculation, suggesting a protective efficacy in sheep which correlated with the induction of both humoral and cell-mediated immune responses.


Assuntos
Vírus da Febre do Vale do Rift , Viroses , Animais , Camundongos , Ovinos , Vírus da Febre do Vale do Rift/genética , Antígenos Virais , Genes Virais , Hepatócitos
7.
J Gen Virol ; 93(Pt 11): 2382-2386, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22875255

RESUMO

The role of cellular Rab GTPases that govern traffic between different endosome populations was analysed on foot-and-mouth disease virus (FMDV) infection. Changes of viral receptor specificity did not alter Rab5 requirement for infection. However, a correlation between uncoating pH and requirement of Rab5 for infection was observed. A mutant FMDV with less acidic uncoating pH threshold was less sensitive to inhibition of Rab5, whereas another mutant with more acidic requirements was more sensitive to inhibition of Rab5. On the contrary, opposed correlations between uncoating pH and dependence of Rab function were observed upon expression of dominant-negative forms of Rab7 or 11. Modulation of uncoating pH also reduced FMDV virulence in suckling mice. These results are consistent with FMDV uncoating inside early endosomes and indicate that displacements from optimum pH for uncoating reduce viral fitness in vivo.


Assuntos
Vírus da Febre Aftosa/fisiologia , Receptores Virais/fisiologia , Proteínas rab5 de Ligação ao GTP/antagonistas & inibidores , Animais , Soluções Tampão , Linhagem Celular , Cricetinae , Endossomos , Regulação da Expressão Gênica , Proteínas de Fluorescência Verde , Concentração de Íons de Hidrogênio , Plasmídeos/genética , Plasmídeos/metabolismo , Internalização do Vírus , Proteínas rab5 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/metabolismo
8.
J Virol ; 85(13): 6492-501, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21525336

RESUMO

The induction of type I interferons (alpha/beta interferon [IFN-α/ß]) in response to viral infection is a crucial step leading to the antiviral state in the host. Viruses produce double-stranded RNA (dsDNA) during their replication cycle that is sensed as nonself by host cells through different receptors. A signaling cascade then is activated to block viral replication and spread. Foot-and-mouth disease virus (FMDV) is a picornavirus that is highly sensitive to IFN, and it causes one of the world's most important animal diseases. In this study, we showed the ability of structural domains predicted to enclose stable dsRNA regions in the 5'- and 3'-noncoding regions (NCRs) of the FMDV genome to trigger an IFN-α/ß response in porcine kidney cultured cells and newborn mice. These RNAs, generated by in vitro transcription, were able to stimulate IFN-ß transcription and induce an antiviral state in SK-6 cells. The induction levels elicited by the different NCR RNAs were compared. Among them, the 3'NCR was identified as a potent IFN activator, and the features in this region involved in signaling have been analyzed. To address whether the FMDV NCR transcripts were able to trigger the innate immune response in vivo, Swiss suckling mice were inoculated intraperitoneally with the RNAs. All transcripts induced the innate response in transfected animals, measured as IFN-α/ß protein levels, antiviral activity in sera, and reduced susceptibility to FMDV infection. Our work provides new insight into innate responses against FMDV and identifies these small noninfectious RNA molecules as potential adjuvants for vaccine improvement and antiviral strategies against picornaviruses.


Assuntos
Regiões 3' não Traduzidas/genética , Regiões 5' não Traduzidas/genética , Vírus da Febre Aftosa/genética , Febre Aftosa/imunologia , Imunidade Inata , Rim/imunologia , RNA Viral/imunologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Febre Aftosa/virologia , Vírus da Febre Aftosa/imunologia , Genoma Viral , Interferon-alfa/biossíntese , Interferon beta/biossíntese , Rim/citologia , Camundongos , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/imunologia , RNA Viral/química , Suínos
9.
Methods Mol Biol ; 2465: 125-135, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35118619

RESUMO

The ncRNAs are short RNA transcripts with sequence and structure resembling that of specific domains in the non-coding regions of the foot-and-mouth disease (FMD) virus (FMDV ) genome. These synthetic molecules induce a robust antiviral response and have been shown to enhance the immune response and protection induced by an FMD inactivated vaccine in pigs. Here, we describe the method for ncRNAs synthesis, formulation, and delivery into mice and pigs for studies focused on testing the adjuvant effect of RNA-based strategies in combination with veterinarian vaccines.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Vacinas Virais , Adjuvantes Imunológicos/farmacologia , Adjuvantes de Vacinas , Animais , Anticorpos Antivirais , Febre Aftosa/prevenção & controle , Vírus da Febre Aftosa/genética , Camundongos , RNA , Suínos , Vacinas Sintéticas , Vacinas Virais/genética
10.
Methods Mol Biol ; 2465: 209-225, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35118624

RESUMO

Live attenuated viruses remain as vaccine agents with unparalleled performance in terms of duration, magnitude, and breadth of induced immune responses. As the yellow fever-attenuated vaccine strain Y17D, attenuated Rift Valley fever virus shares features suitable to be used as a viral vector for heterologous antigen expression and bivalent vaccine development. Current reverse genetics technology showed the successful rescue of RVFV carrying foreign antigens with little immunogenicity loss in experimental animal models. We show here the basic experimental protocol to achieve the expression of candidate vaccine antigens from other important diseases of ruminants using RVFV as a vector platform as well as preliminary steps for the characterization of immunogenicity in vivo.


Assuntos
Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Vacinas Virais , Animais , Antígenos Virais/genética , Febre do Vale de Rift/prevenção & controle , Vírus da Febre do Vale do Rift/genética , Ruminantes , Vacinas Virais/genética
11.
Front Cell Infect Microbiol ; 12: 875539, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35573791

RESUMO

Rift Valley fever (RVF) is an arboviral zoonotic disease affecting many African countries with the potential to spread to other geographical areas. RVF affects sheep, goats, cattle and camels, causing a high rate of abortions and death of newborn lambs. Also, humans can be infected, developing a usually self-limiting disease that can turn into a more severe illness in a low percentage of cases. Although different veterinary vaccines are available in endemic areas in Africa, to date no human vaccine has been licensed. In previous works, we described the selection and characterization of a favipiravir-mutagenized RVFV variant, termed 40Fp8, with potential as a RVF vaccine candidate due to the strong attenuation shown in immunocompromised animal models. Compared to the parental South African 56/74 viral strain, 40Fp8 displayed 7 amino acid substitutions in the L-protein, three of them located in the central region corresponding to the catalytic core of the RNA-dependent RNA polymerase (RdRp). In this work, by means of a reverse genetics system, we have analyzed the effect on virulence of these amino acid changes, alone or combined, both in vitro and in vivo. We found that the simultaneous introduction of two changes (G924S and A1303T) in the heterologous ZH548-RVFV Egyptian strain conferred attenuated phenotypes to the rescued viruses as shown in infected mice without affecting virus immunogenicity. Our results suggest that both changes induce resistance to favipiravir likely associated to some fitness cost that could be the basis for the observed attenuation in vivo. Conversely, the third change, I1050V, appears to be a compensatory mutation increasing viral fitness. Altogether, these results provide relevant information for the safety improvement of novel live attenuated RVFV vaccines.


Assuntos
Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Vacinas Virais , Aminoácidos , Animais , Bovinos , Vírus de DNA , Feminino , Camundongos , Gravidez , Febre do Vale de Rift/epidemiologia , Vírus da Febre do Vale do Rift/genética , Ovinos , Vacinas Atenuadas/genética , Vacinas Virais/genética
12.
Viruses ; 13(4)2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33805122

RESUMO

Rift Valley fever virus (RVFV) is a mosquito-borne bunyavirus that causes an important disease in ruminants, with great economic losses. The infection can be also transmitted to humans; therefore, it is considered a major threat to both human and animal health. In a previous work, we described a novel RVFV variant selected in cell culture in the presence of the antiviral agent favipiravir that was highly attenuated in vivo. This variant displayed 24 amino acid substitutions in different viral proteins when compared to its parental viral strain, two of them located in the NSs protein that is known to be the major virulence factor of RVFV. By means of a reverse genetics system, in this work we have analyzed the effect that one of these substitutions, P82L, has in viral attenuation in vivo. Rescued viruses carrying this single amino acid change were clearly attenuated in BALB/c mice while their growth in an interferon (IFN)-competent cell line as well as the production of interferon beta (IFN-ß) did not seem to be affected. However, the pattern of nuclear NSs accumulation was modified in cells infected with the mutant viruses. These results highlight the key role of the NSs protein in the modulation of viral infectivity.


Assuntos
Substituição de Aminoácidos , Febre do Vale de Rift/prevenção & controle , Vírus da Febre do Vale do Rift/química , Vírus da Febre do Vale do Rift/imunologia , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/imunologia , Amidas/farmacologia , Animais , Antivirais/farmacologia , Linhagem Celular , Chlorocebus aethiops , Cricetinae , Células HEK293 , Humanos , Rim/citologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pirazinas/farmacologia , Genética Reversa , Febre do Vale de Rift/imunologia , Vírus da Febre do Vale do Rift/efeitos dos fármacos , Vírus da Febre do Vale do Rift/genética , Células Vero , Virulência , Fatores de Virulência/genética
13.
PLoS One ; 16(8): e0256401, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34411199

RESUMO

SARS-CoV-2 infection in hospital areas is of a particular concern, since the close interaction between health care personnel and patients diagnosed with COVID-19, which allows virus to be easily spread between them and subsequently to their families and communities. Preventing SARS-CoV-2 infection among healthcare personnel is essential to reduce the frequency of infections and outbreaks during the pandemic considering that they work in high-risk areas. In this research, silver nanoparticles (AgNPs) were tested in vitro and shown to have an inhibitory effect on SARS-CoV-2 infection in cultured cells. Subsequently, we assess the effects of mouthwash and nose rinse with ARGOVIT® silver nanoparticles (AgNPs), in the prevention of SARS-CoV-2 contagion in health workers consider as high-risk group of acquiring the infection in the General Tijuana Hospital, Mexico, a hospital for the exclusive recruitment of patients diagnosed with COVID-19. We present a prospective randomized study of 231 participants that was carried out for 9 weeks (during the declaration of a pandemic). The "experimental" group was instructed to do mouthwash and nose rinse with the AgNPs solution; the "control" group was instructed to do mouthwashes and nose rinse in a conventional way. The incidence of SARS-CoV-2 infection was significantly lower in the "experimental" group (two participants of 114, 1.8%) compared to the "control" group (thirty-three participants of 117, 28.2%), with an 84.8% efficiency. We conclude that the mouth and nasal rinse with AgNPs helps in the prevention of SARS-CoV-2 infection in health personnel who are exposed to patients diagnosed with COVID-19.


Assuntos
COVID-19/prevenção & controle , Pessoal de Saúde , Nanopartículas Metálicas/administração & dosagem , Antissépticos Bucais/administração & dosagem , SARS-CoV-2 , Prata/administração & dosagem , Adolescente , Adulto , Idoso , Animais , COVID-19/epidemiologia , Chlorocebus aethiops , Feminino , Humanos , Masculino , México , Pessoa de Meia-Idade , Células Vero
14.
J Virol ; 83(8): 3475-85, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19211755

RESUMO

We constructed foot-and-mouth disease virus (FMDV) mutants bearing independent deletions of the two stem-loop structures predicted in the 3' noncoding region of viral RNA, SL1 and SL2, respectively. Deletion of SL2 was lethal for viral infectivity in cultured cells, while deletion of SL1 resulted in viruses with slower growth kinetics and downregulated replication associated with impaired negative-strand RNA synthesis. With the aim of exploring the potential of an RNA-based vaccine against foot-and-mouth disease using attenuated viral genomes, full-length chimeric O1K/C-S8 RNAs were first inoculated into pigs. Our results show that FMDV viral transcripts could generate infectious virus and induce disease in swine. In contrast, RNAs carrying the DeltaSL1 mutation on an FMDV O1K genome were innocuous for pigs but elicited a specific immune response including both humoral and cellular responses. A single inoculation with 500 microg of RNA was able to induce a neutralizing antibody response. This response could be further boosted by a second RNA injection. The presence of the DeltaSL1 mutation was confirmed in viruses isolated from serum samples of RNA-inoculated pigs or after transfection and five passages in cell culture. These findings suggest that deletion of SL1 might contribute to FMDV attenuation in swine and support the potential of RNA technology for the design of new FMDV vaccines.


Assuntos
Regiões 3' não Traduzidas , Vírus da Febre Aftosa/imunologia , Vírus da Febre Aftosa/patogenicidade , Febre Aftosa/prevenção & controle , RNA Viral/genética , Deleção de Sequência , Doenças dos Suínos/prevenção & controle , Animais , Anticorpos Antivirais/sangue , Febre Aftosa/imunologia , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/fisiologia , Imunização Secundária , Linfócitos/imunologia , Testes de Neutralização , RNA Viral/administração & dosagem , Suínos , Doenças dos Suínos/imunologia , Vacinas Atenuadas/imunologia , Vacinas Virais/imunologia , Replicação Viral
15.
Front Microbiol ; 11: 621463, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33633696

RESUMO

Rift Valley fever virus (RVFV) is a mosquito-borne bunyavirus that causes Rift Valley fever (RVF), a zoonotic disease of wild and domestic ruminants, causing serious economic losses and a threat to human health that could be controlled by vaccination. Though RVF vaccines are available for livestock, no RVF vaccines have been licensed for veterinary use in non-endemic countries nor for human populations in RVF risk areas. In a recent work, we showed that favipiravir, a promising drug with antiviral activity against a number of RNA viruses, led to the extinction of RVFV from infected cell cultures. Nevertheless, certain drug concentrations allowed the recovery of a virus variant showing increased resistance to favipiravir. In this work, we characterized this novel resistant variant both at genomic and phenotypic level in vitro and in vivo. Interestingly, the resistant virus displayed reduced growth rates in C6/36 insect cells but not in mammalian cell lines, and was highly attenuated but still immunogenic in vivo. Some amino acid substitutions were identified in the viral RNA-dependent RNA-polymerase (RdRp) gene and in the virus encoded type I-interferon (IFN-I) antagonist NSs gene, in catalytic core motifs and nuclear localization associated positions, respectively. These data may help to characterize novel potential virulence markers, offering additional strategies for further safety improvements of RVF live attenuated vaccine candidates.

16.
Vaccines (Basel) ; 8(1)2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32059491

RESUMO

In vitro neutralizing antibodies have been often correlated with protection against Rift Valley fever virus (RVFV) infection. We have reported previously that a single inoculation of sucrose-purified modified vaccinia Ankara (MVA) encoding RVFV glycoproteins (rMVAGnGc) was sufficient to induce a protective immune response in mice after a lethal RVFV challenge. Protection was related to the presence of glycoprotein specific CD8+ cells, with a low-level detection of in vitro neutralizing antibodies. In this work we extended those observations aimed to explore the role of humoral responses after MVA vaccination and to study the contribution of each glycoprotein antigen to the protective efficacy. Thus, we tested the efficacy and immune responses in BALB/c mice of recombinant MVA viruses expressing either glycoprotein Gn (rMVAGn) or Gc (rMVAGc). In the absence of serum neutralizing antibodies, our data strongly suggest that protection of vaccinated mice upon the RVFV challenge can be achieved by the activation of cellular responses mainly directed against Gc epitopes. The involvement of cellular immunity was stressed by the fact that protection of mice was strain dependent. Furthermore, our data suggest that the rMVA based single dose vaccination elicits suboptimal humoral immune responses against Gn antigen since disease in mice was exacerbated upon virus challenge in the presence of rMVAGnGc or rMVAGn immune serum. Thus, Gc-specific cellular immunity could be an important component in the protection after the challenge observed in BALB/c mice, contributing to the elimination of infected cells reducing morbidity and mortality and counteracting the deleterious effect of a subneutralizing antibody immune response.

17.
Transbound Emerg Dis ; 67(4): 1614-1622, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31994334

RESUMO

Foot-and-mouth disease virus (FMDV) causes a widely extended contagious disease of livestock. We have previously reported that a synthetic dendrimeric peptide, termed B2 T(mal), consisting of two copies of a B-cell epitope [VP1(140-158)] linked through maleimide groups to a T-cell epitope [3A(21-35)] of FMDV, elicits potent B- and T-cell-specific responses and confers solid protection in pigs to type O FMDV challenge. Longer duration of the protective response and the possibility of inducing protection after a single dose are important requirements for an efficient FMD vaccine. Herein, we show that administration of two doses of B2 T(mal) elicited high levels of specific total IgGs and neutralizing antibodies that lasted 4-5 months after the peptide boost. Additionally, concomitant levels of IFN-γ-producing specific T cells were observed. Immunization with two doses of B2 T(mal) conferred a long-lasting reduced susceptibility to FMDV infection, up to 136 days (19/20 weeks) post-boost. Remarkably, a similar duration of the protective response was achieved by a single dose of B2 T(mal). The effect on the B2 T(mal) vaccine of RNA transcripts derived from non-coding regions in the FMDV genome, known to enhance the immune response and protection induced by a conventional inactivated vaccine, was also analysed. The contribution of our results to the development of FMD dendrimeric vaccines is discussed.


Assuntos
Epitopos de Linfócito B/imunologia , Vírus da Febre Aftosa/imunologia , Febre Aftosa/prevenção & controle , Peptídeos/imunologia , Doenças dos Suínos/prevenção & controle , Vacinas Virais/administração & dosagem , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais/imunologia , Dendrímeros , Epitopos de Linfócito T/imunologia , Feminino , Febre Aftosa/imunologia , Febre Aftosa/virologia , Imunidade , Testes de Neutralização , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/virologia , Linfócitos T/imunologia , Vacinas Virais/imunologia
18.
Vet J ; 177(2): 169-77, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17804267

RESUMO

Classical swine fever virus (CSFV) is the causative agent of one of the most devastating porcine haemorrhagic viral diseases, classical swine fever (CSF). CSFV mainly infects endothelial cells and macrophages and at the same time promotes bystander apoptosis of the surrounding T cells, causing strong immune suppression and high mortality rates. Most animals experience acute infection, during which they either die or survive by producing neutralising antibodies to the virus. However, in a few cases, the impaired immune system cannot control viral progression, leading to chronic infection. Efficient live attenuated vaccines against CSFV exist and are routinely used only in endemic countries. The ability of these vaccines to replicate in the host, even at very low rates, makes it extremely difficult to distinguish vaccinated from infected animals, favouring a restricted policy regarding vaccination against CSFV in non-endemic countries. There is a clear need for efficient and safer marker vaccines to assist in the control of future CSF outbreaks. In this review article, some of the most recent advances in the field of recombinant vaccines against CSFV are presented and the nature of the protective immune responses they induce is discussed.


Assuntos
Peste Suína Clássica/prevenção & controle , Imunidade Celular/fisiologia , Vacinas Sintéticas/imunologia , Vacinas Virais/imunologia , Animais , Suínos
19.
Vet Microbiol ; 203: 275-279, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28619156

RESUMO

Foot-and-mouth disease virus (FMDV) is the etiological agent of a highly contagious disease that affects important livestock species. Vaccines based on inactivated FMDV virions provide a useful tool for the control of this pathogen. However, long term storage at 4°C (the temperature for vaccine storage) or ruptures of the cold chain, provoke the dissociation of virions, reducing the immunogenicity of the vaccine. An FMDV mutant carrying amino acid replacements VP1 N17D and VP2 H145Y isolated previously rendered virions with increased resistance to dissociation at 4°C. We have evaluated the immunogenicity in swine (a natural FMDV host) of a chemically inactivated vaccine based on this mutant. The presence of these amino acid substitutions did not compromise the immunological potential, including its ability to elicit neutralizing antibodies. These results support the feasibility of this kind of mutants with increased capsid stability as suitable viruses for producing improved FMDV vaccines.


Assuntos
Anticorpos Antivirais/imunologia , Proteínas do Capsídeo/imunologia , Vírus da Febre Aftosa/imunologia , Febre Aftosa/prevenção & controle , Doenças dos Suínos/prevenção & controle , Vacinas Virais/imunologia , Substituição de Aminoácidos , Animais , Anticorpos Neutralizantes , Proteínas do Capsídeo/genética , Febre Aftosa/virologia , Vírus da Febre Aftosa/genética , Modelos Moleculares , Mutação , Suínos , Doenças dos Suínos/virologia , Vacinas de Produtos Inativados/imunologia , Vírion
20.
Antiviral Res ; 142: 30-36, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28315707

RESUMO

Foot-and-mouth disease virus (FMDV) is the causative agent of a highly contagious disease and a major concern in animal health worldwide. We have previously reported the use of RNA transcripts mimicking structural domains in the non-coding regions of the FMDV RNA as potent type-I interferon (IFN) inducers showing antiviral effect in vivo, as well as their immunomodulatory properties in combination with an FMD vaccine in mice. Here, we describe the enhancing effect of RNA delivery on the immunogenicity and protection induced by a suboptimal dose of a conventional FMD vaccine in pigs. Animals receiving the RNA developed earlier and higher levels of neutralizing antibodies against homologous and heterologous isolates, compared to those immunized with the vaccine alone, and had higher anti-FMDV titers at late times post-vaccination. RNA delivery also induced higher specific T-cell response and protection levels against FMDV challenge. Peripheral blood mononuclear cells from pigs inoculated with RNA and the vaccine had a higher IFN-γ specific response than those from pigs receiving the vaccine alone. When challenged with FMDV, all three animals immunized with the conventional vaccine developed antibodies to the non-structural viral proteins 3ABC and two of them developed severe signs of disease. In the group receiving the vaccine together with the RNA, two pigs were fully protected while one showed delayed and mild signs of disease. Our results support the immunomodulatory effect of these RNA molecules in natural hosts and suggest their potential use for improvement of FMD vaccines strategies.


Assuntos
Vírus da Febre Aftosa/imunologia , Febre Aftosa/imunologia , Febre Aftosa/prevenção & controle , RNA/administração & dosagem , RNA/imunologia , Vacinas Virais/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Feminino , Vírus da Febre Aftosa/genética , Imunoglobulina G/sangue , Interferon Tipo I/imunologia , Interferon gama/imunologia , Cinética , Leucócitos Mononucleares/imunologia , RNA/síntese química , Pequeno RNA não Traduzido , Suínos , Doenças dos Suínos/prevenção & controle , Linfócitos T/imunologia , Vacinação , Proteínas não Estruturais Virais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA