Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
J Neurosci Res ; 98(5): 843-868, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31797423

RESUMO

Loading and testosterone may influence musculoskeletal recovery after spinal cord injury (SCI). Our objectives were to determine (a) the acute effects of bodyweight-supported treadmill training (TM) on hindlimb cancellous bone microstructure and muscle mass in adult rats after severe contusion SCI and (b) whether longer-term TM with adjuvant testosterone enanthate (TE) delivers musculoskeletal benefit. In Study 1, TM (40 min/day, 5 days/week, beginning 1 week postsurgery) did not prevent SCI-induced hindlimb cancellous bone loss after 3 weeks. In Study 2, TM did not attenuate SCI-induced plantar flexor muscles atrophy nor improve locomotor recovery after 4 weeks. In our main study, SCI produced extensive distal femur and proximal tibia cancellous bone deficits, a deleterious slow-to-fast fiber-type transition in soleus, lower muscle fiber cross-sectional area (fCSA), impaired muscle force production, and levator ani/bulbocavernosus (LABC) muscle atrophy after 8 weeks. TE alone (7.0 mg/week) suppressed bone resorption, attenuated cancellous bone loss, constrained the soleus fiber-type transition, and prevented LABC atrophy. In comparison, TE+TM concomitantly suppressed bone resorption and stimulated bone formation after SCI, produced near-complete cancellous bone preservation, prevented the soleus fiber-type transition, attenuated soleus fCSA atrophy, maintained soleus force production, and increased LABC mass. 75% of SCI+TE+TM animals recovered voluntary over-ground hindlimb stepping, while no SCI and only 20% of SCI+TE animals regained stepping ability. Positive associations between testosterone and locomotor function suggest that TE influenced locomotor recovery. In conclusion, short-term TM alone did not improve bone, muscle, or locomotor recovery in adult rats after severe SCI, while longer-term TE+TM provided more comprehensive musculoskeletal benefit than TE alone.


Assuntos
Osso Esponjoso/fisiopatologia , Músculo Esquelético/fisiopatologia , Condicionamento Físico Animal/fisiologia , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/reabilitação , Testosterona/uso terapêutico , Animais , Osso Esponjoso/efeitos dos fármacos , Quimioterapia Combinada , Masculino , Músculo Esquelético/efeitos dos fármacos , Ratos , Recuperação de Função Fisiológica/efeitos dos fármacos , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/fisiopatologia , Testosterona/administração & dosagem
2.
Calcif Tissue Int ; 104(1): 79-91, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30218117

RESUMO

To elucidate mechanisms of bone loss after spinal cord injury (SCI), we evaluated the time-course of cancellous and cortical bone microarchitectural deterioration via microcomputed tomography, measured histomorphometric and circulating bone turnover indices, and characterized the development of whole bone mechanical deficits in a clinically relevant experimental SCI model. 16-weeks-old male Sprague-Dawley rats received T9 laminectomy (SHAM, n = 50) or moderate-severe contusion SCI (n = 52). Outcomes were assessed at 2-weeks, 1-month, 2-months, and 3-months post-surgery. SCI produced immediate sublesional paralysis and persistent hindlimb locomotor impairment. Higher circulating tartrate-resistant acid phosphatase 5b (bone resorption marker) and lower osteoblast bone surface and histomorphometric cancellous bone formation indices were present in SCI animals at 2-weeks post-surgery, suggesting uncoupled cancellous bone turnover. Distal femoral and proximal tibial cancellous bone volume, trabecular thickness, and trabecular number were markedly lower after SCI, with the residual cancellous network exhibiting less trabecular connectivity. Periosteal bone formation indices were lower at 2-weeks and 1-month post-SCI, preceding femoral cortical bone loss and the development of bone mechanical deficits at the distal femur and femoral diaphysis. SCI animals also exhibited lower serum testosterone than SHAM, until 2-months post-surgery, and lower serum leptin throughout. Our moderate-severe contusion SCI model displayed rapid cancellous bone deterioration and more gradual cortical bone loss and development of whole bone mechanical deficits, which likely resulted from a temporal uncoupling of bone turnover, similar to the sequalae observed in the motor-complete SCI population. Low testosterone and/or leptin may contribute to the molecular mechanisms underlying bone deterioration after SCI.


Assuntos
Remodelação Óssea/fisiologia , Reabsorção Óssea/metabolismo , Osteogênese/fisiologia , Traumatismos da Medula Espinal/metabolismo , Animais , Densidade Óssea/fisiologia , Doenças Ósseas Metabólicas/metabolismo , Osso Cortical/metabolismo , Masculino , Ratos Sprague-Dawley
3.
Int J Mol Sci ; 19(6)2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29880749

RESUMO

Neuromuscular impairment and reduced musculoskeletal integrity are hallmarks of spinal cord injury (SCI) that hinder locomotor recovery. These impairments are precipitated by the neurological insult and resulting disuse, which has stimulated interest in activity-based physical rehabilitation therapies (ABTs) that promote neuromuscular plasticity after SCI. However, ABT efficacy declines as SCI severity increases. Additionally, many men with SCI exhibit low testosterone, which may exacerbate neuromusculoskeletal impairment. Incorporating testosterone adjuvant to ABTs may improve musculoskeletal recovery and neuroplasticity because androgens attenuate muscle loss and the slow-to-fast muscle fiber-type transition after SCI, in a manner independent from mechanical strain, and promote motoneuron survival. These neuromusculoskeletal benefits are promising, although testosterone alone produces only limited functional improvement in rodent SCI models. In this review, we discuss the (1) molecular deficits underlying muscle loss after SCI; (2) independent influences of testosterone and locomotor training on neuromuscular function and musculoskeletal integrity post-SCI; (3) hormonal and molecular mechanisms underlying the therapeutic efficacy of these strategies; and (4) evidence supporting a multimodal strategy involving ABT with adjuvant testosterone, as a potential means to promote more comprehensive neuromusculoskeletal recovery than either strategy alone.


Assuntos
Exercício Físico , Junção Neuromuscular/efeitos dos fármacos , Traumatismos da Medula Espinal/reabilitação , Testosterona/administração & dosagem , Androgênios/metabolismo , Animais , Estrogênios/metabolismo , Humanos , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Junção Neuromuscular/fisiopatologia , Transdução de Sinais/efeitos dos fármacos , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/fisiopatologia , Testosterona/metabolismo
4.
Am J Physiol Endocrinol Metab ; 308(12): E1035-42, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25898953

RESUMO

The value of testosterone replacement therapy (TRT) for older men is currently a topic of intense debate. While US testosterone prescriptions have tripled in the past decade (9), debate continues over the risks and benefits of TRT. TRT is currently prescribed for older men with either low serum testosterone (T) or low T plus accompanying symptoms of hypogonadism. The normal range for serum testosterone is 300 to 1,000 ng/dl. Serum T ≤ 300 ng/dl is considered to be low, and T ≤ 250 is considered to be frank hypogonadism. Most experts support TRT for older men with frank hypogonadism and symptoms. Treatment for men who simply have low T remains somewhat controversial. TRT is most frequently administered by intramuscular (im) injection of long-acting T esters or transdermally via patch or gel preparations and infrequently via oral administration. TRT produces a number of established benefits in hypogonadal men, including increased muscle mass and strength, decreased fat mass, increased bone mineral density, and improved sexual function, and in some cases those benefits are dose dependent. For example, doses of TRT administered by im injection are typically higher than those administered transdermally, which results in greater musculoskeletal benefits. TRT also produces known risks including development of polycythemia (Hct > 50) in 6% of those treated, decrease in HDL, breast tenderness and enlargement, prostate enlargement, increases in serum PSA, and prostate-related events and may cause suppression of the hypothalamic-pituitary-gonadal axis. Importantly, TRT does not increase the risk of prostate cancer. Putative risks include edema and worsening of sleep apnea. Several recent reports have also indicated that TRT may produce cardiovascular (CV) risks, while others report no risk or even benefit. To address the potential CV risks of TRT, we have recently reported via meta-analysis that oral TRT increases CV risk and suggested that the CV risk profile for im TRT may be better than that for oral or transdermal TRT.


Assuntos
Envelhecimento , Terapia de Reposição Hormonal/métodos , Osteoporose/tratamento farmacológico , Sarcopenia/tratamento farmacológico , Testosterona/administração & dosagem , Testosterona/efeitos adversos , Administração Cutânea , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/efeitos dos fármacos , Humanos , Hipogonadismo/sangue , Hipogonadismo/tratamento farmacológico , Injeções , Masculino , Osteoporose/sangue , Osteoporose/prevenção & controle , Sarcopenia/sangue , Sarcopenia/prevenção & controle , Testosterona/sangue , Resultado do Tratamento
5.
Exerc Sport Sci Rev ; 43(4): 222-30, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26196865

RESUMO

Androgens and estrogens influence skeletal development and maintenance in males. However, the relative contributions of the circulating sex steroid hormones that originate from testicular/adrenal secretion versus those produced locally in bone via intracrine action require further elucidation. Our novel hypothesis is that testosterone exerts direct protective effects on the adult male skeleton independently of the actions of 5α-reductase or aromatase.


Assuntos
Osso e Ossos/metabolismo , Testosterona/biossíntese , Envelhecimento/metabolismo , Aromatase/metabolismo , Osso e Ossos/enzimologia , Colestenona 5 alfa-Redutase/metabolismo , Di-Hidrotestosterona/metabolismo , Estradiol/biossíntese , Estradiol/metabolismo , Humanos , Masculino , Testosterona/deficiência , Testosterona/metabolismo
6.
Stat Med ; 34(10): 1621-33, 2015 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-25645442

RESUMO

Repeated measurement designs have been widely used in various randomized controlled trials for evaluating long-term intervention efficacies. For some clinical trials, the primary research question is how to compare two treatments at a fixed time, using a t-test. Although simple, robust, and convenient, this type of analysis fails to utilize a large amount of collected information. Alternatively, the mixed-effects model is commonly used for repeated measurement data. It models all available data jointly and allows explicit assessment of the overall treatment effects across the entire time spectrum. In this paper, we propose an analytic strategy for longitudinal clinical trial data where the mixed-effects model is coupled with a model selection scheme. The proposed test statistics not only make full use of all available data but also utilize the information from the optimal model deemed for the data. The performance of the proposed method under various setups, including different data missing mechanisms, is evaluated via extensive Monte Carlo simulations. Our numerical results demonstrate that the proposed analytic procedure is more powerful than the t-test when the primary interest is to test for the treatment effect at the last time point. Simulations also reveal that the proposed method outperforms the usual mixed-effects model for testing the overall treatment effects across time. In addition, the proposed framework is more robust and flexible in dealing with missing data compared with several competing methods. The utility of the proposed method is demonstrated by analyzing a clinical trial on the cognitive effect of testosterone in geriatric men with low baseline testosterone levels.


Assuntos
Modelos Estatísticos , Ensaios Clínicos Controlados Aleatórios como Assunto/estatística & dados numéricos , Projetos de Pesquisa/estatística & dados numéricos , Idoso , Análise de Variância , Androgênios/farmacologia , Viés , Cognição/efeitos dos fármacos , Simulação por Computador , Interpretação Estatística de Dados , Humanos , Estudos Longitudinais , Masculino , Ensaios Clínicos Controlados Aleatórios como Assunto/métodos , Ensaios Clínicos Controlados Aleatórios como Assunto/normas , Projetos de Pesquisa/normas , Testosterona/farmacologia
7.
Am J Physiol Endocrinol Metab ; 307(5): E456-61, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25074984

RESUMO

Testosterone (T) stimulates erythropoiesis and regulates iron homeostasis. However, it remains unknown whether the (type II) 5α-reduction of T to dihydrotestosterone (DHT) mediates these androgenic effects, as it does in some other tissues. Our purpose was to determine whether inhibition of type II 5α-reductase (via finasteride) alters red blood cell (RBC) production and serum markers of iron homeostasis subsequent to testosterone-enanthate (TE) administration in older hypogonadal men. Sixty men aged ≥60 yr with serum T <300 ng/dl or bioavailable T <70 ng/dl received treatment with TE (125 mg/wk) vs. vehicle paired with finasteride (5 mg/day) vs. placebo using a 2 × 2 factorial design. Over the course of 12 mo, TE increased RBC count 9%, hematocrit 4%, and hemoglobin 8% while suppressing serum hepcidin 57% (P < 0.001 for all measurements). Most of the aforementioned changes occurred in the first 3 mo of treatment, and finasteride coadministration did not significantly alter any of these effects. TE also reduced serum ferritin 32% (P = 0.002) within 3 mo of treatment initiation without altering iron, transferrin, or transferrin saturation. We conclude that TE stimulates erythropoiesis and alters iron homeostasis independently of the type II 5α-reductase enzyme. These results demonstrate that elevated DHT is not required for androgen-mediated erythropoiesis or for alterations in iron homeostasis that would appear to support iron incorporation into RBCs.


Assuntos
Di-Hidrotestosterona/metabolismo , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Ferro/metabolismo , Testosterona/análogos & derivados , Idoso , Idoso de 80 Anos ou mais , Método Duplo-Cego , Interações Medicamentosas , Contagem de Eritrócitos , Ferritinas/sangue , Finasterida/farmacologia , Humanos , Ferro/sangue , Masculino , Pessoa de Meia-Idade , Placebos , Testosterona/farmacologia , Transferrina/análise
8.
Am J Physiol Endocrinol Metab ; 306(4): E433-42, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24326421

RESUMO

Testosterone acts directly at androgen receptors and also exerts potent actions following 5α-reduction to dihydrotestosterone (DHT). Finasteride (type II 5α-reductase inhibitor) lowers DHT and is used to treat benign prostatic hyperplasia. However, it is unknown whether elevated DHT mediates either beneficial musculoskeletal effects or prostate enlargement resulting from higher-than-replacement doses of testosterone. Our purpose was to determine whether administration of testosterone plus finasteride to older hypogonadal men could produce musculoskeletal benefits without prostate enlargement. Sixty men aged ≥60 yr with a serum testosterone concentration of ≤300 ng/dl or bioavailable testosterone ≤70 ng/dl received 52 wk of treatment with testosterone enanthate (TE; 125 mg/wk) vs. vehicle, paired with finasteride (5 mg/day) vs. placebo using a 2 × 2 factorial design. Over the course of 12 mo, TE increased upper and lower body muscle strength by 8-14% (P = 0.015 to <0.001), fat-free mass 4.04 kg (P = 0.032), lumbar spine bone mineral density (BMD) 4.19% (P < 0.001), and total hip BMD 1.96% (P = 0.024) while reducing total body fat -3.87 kg (P < 0.001) and trunk fat -1.88 kg (P = 0.0051). In the first 3 mo, testosterone increased hematocrit 4.13% (P < 0.001). Coadministration of finasteride did not alter any of these effects. Over 12 mo, testosterone also increased prostate volume 11.4 cm(3) (P = 0.0051), an effect that was completely prevented by finasteride (P = 0.0027). We conclude that a higher-than-replacement TE combined with finasteride significantly increases muscle strength and BMD and reduces body fat without causing prostate enlargement. These results demonstrate that elevated DHT mediates testosterone-induced prostate enlargement but is not required for benefits in musculoskeletal or adipose tissue.


Assuntos
Densidade Óssea/efeitos dos fármacos , Finasterida/uso terapêutico , Hipogonadismo/tratamento farmacológico , Músculo Esquelético/efeitos dos fármacos , Próstata/efeitos dos fármacos , Testosterona/análogos & derivados , Idoso , Composição Corporal/efeitos dos fármacos , Quimioterapia Combinada , Finasterida/farmacologia , Humanos , Masculino , Pessoa de Meia-Idade , Força Muscular/efeitos dos fármacos , Testosterona/farmacologia , Testosterona/uso terapêutico , Resultado do Tratamento
9.
BMC Med ; 12: 211, 2014 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-25428524

RESUMO

BACKGROUND: Potential cardiovascular (CV) risks of testosterone replacement therapy (TRT) are currently a topic of intense interest. However, no studies have addressed CV risk as a function of the route of administration of TRT. METHODS: Two meta-analyses were conducted, one of CV adverse events (AEs) in 35 randomized controlled trials (RCTs) of TRT lasting 12 weeks or more, and one of 32 studies reporting the effect of TRT on serum testosterone and dihydrotestosterone (DHT). RESULTS: CV risks of TRT: Of 2,313 studies identified, 35 were eligible and included 3,703 mostly older men who experienced 218 CV-related AEs. No significant risk for CV AEs was present when all TRT administration routes were grouped (relative risk (RR) = 1.28, 95% confidence interval (CI): 0.76 to 2.13, P = 0.34). When analyzed separately, oral TRT produced significant CV risk (RR = 2.20, 95% CI: 1.45 to 3.55, P = 0.015), while neither intramuscular (RR = 0.66, 95% CI: 0.28 to 1.56, P = 0.32) nor transdermal (gel or patch) TRT (RR = 1.27, 95% CI: 0.62 to 2.62, P = 0.48) significantly altered CV risk. Serum testosterone/DHT following TRT: Of 419 studies identified, 32 were eligible which included 1,152 men receiving TRT. No significant difference in the elevation of serum testosterone was present between intramuscular or transdermal TRT. However, transdermal TRT elevated serum DHT (5.46-fold, 95% CI: 4.51 to 6.60) to a greater magnitude than intramuscular TRT (2.20-fold, 95% CI: 1.74 to 2.77). CONCLUSIONS: Oral TRT produces significant CV risk. While no significant effects on CV risk were observed with either injected or transdermal TRT, the point estimates suggest that further research is needed to establish whether administration by these routes is protective or detrimental, respectively. Differences in the degree to which serum DHT is elevated may underlie the varying CV risk by TRT administration route, as elevated serum dihydrotestosterone has been shown to be associated with CV risk in observational studies.


Assuntos
Doenças Cardiovasculares/etiologia , Di-Hidrotestosterona/sangue , Testosterona/administração & dosagem , Administração Cutânea , Adulto , Doenças Cardiovasculares/sangue , Terapia de Reposição Hormonal , Humanos , Injeções Intramusculares , Masculino , Ensaios Clínicos Controlados Aleatórios como Assunto , Fatores de Risco
10.
Exp Physiol ; 98(5): 1038-52, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23291913

RESUMO

Skeletal muscle is a highly dynamic tissue that responds to endogenous and external stimuli, including alterations in mechanical loading and growth factors. In particular, the antigravity soleus muscle experiences significant muscle atrophy during disuse and extensive muscle damage upon reloading. Given that insulin-like growth factor-1 (IGF-1) has been implicated as a central regulator of muscle repair and modulation of muscle size, we examined the effect of virally mediated overexpression of IGF-1 on the soleus muscle following hindlimb cast immobilization and upon reloading. Recombinant IGF-1 cDNA virus was injected into one of the posterior hindlimbs of the mice, while the contralateral limb was injected with saline (control). At 20 weeks of age, both hindlimbs were immobilized for 2 weeks to induce muscle atrophy in the soleus and ankle plantarflexor muscle group. Subsequently, the mice were allowed to reambulate, and muscle damage and recovery were monitored over a period of 2-21 days. The primary finding of this study was that IGF-1 overexpression attenuated reloading-induced muscle damage in the soleus muscle, and accelerated muscle regeneration and force recovery. Muscle T2 assessed by magnetic resonance imaging, a non-specific marker of muscle damage, was significantly lower in IGF-1-injected compared with contralateral soleus muscles at 2 and 5 days reambulation (P<0.05). The reduced prevalence of muscle damage in IGF-1-injected soleus muscles was confirmed on histology, with a lower fractional area of abnormal muscle tissue in IGF-1-injected muscles at 2 days reambulation (33.2±3.3 versus 54.1±3.6%, P<0.05). Evidence of the effect of IGF-1 on muscle regeneration included timely increases in the number of central nuclei (21% at 5 days reambulation), paired-box transcription factor 7 (36% at 5 days), embryonic myosin (37% at 10 days) and elevated MyoD mRNA (7-fold at 2 days) in IGF-1-injected limbs (P<0.05). These findings demonstrate a potential role of IGF-1 in protecting unloaded skeletal muscles from damage and accelerating muscle repair and regeneration.


Assuntos
Elevação dos Membros Posteriores/fisiologia , Fator de Crescimento Insulin-Like I/biossíntese , Músculo Esquelético/lesões , Músculo Esquelético/fisiologia , Atrofia Muscular/fisiopatologia , Animais , Feminino , Imageamento por Ressonância Magnética , Camundongos , Músculo Esquelético/patologia , Proteína MyoD/biossíntese , Miosinas/biossíntese , Recuperação de Função Fisiológica , Regeneração/fisiologia
11.
Med Sci Sports Exerc ; 55(5): 813-823, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36728986

RESUMO

INTRODUCTION: Spinal cord injury (SCI) produces diminished bone perfusion and bone loss in the paralyzed limbs. Activity-based physical therapy (ABPT) modalities that mobilize and/or reload the paralyzed limbs (e.g., bodyweight-supported treadmill training (BWSTT) and passive-isokinetic bicycle training) transiently promote lower-extremity blood flow (BF). However, it remains unknown whether ABPT alter resting-state bone BF or improve skeletal integrity after SCI. METHODS: Four-month-old male Sprague-Dawley rats received T 9 laminectomy alone (SHAM; n = 13) or T 9 laminectomy with severe contusion SCI ( n = 48). On postsurgery day 7, SCI rats were stratified to undergo 3 wk of no ABPT, quadrupedal (q)BWSTT, or passive-isokinetic hindlimb bicycle training. Both ABPT regimens involved two 20-min bouts per day, performed 5 d·wk -1 . We assessed locomotor recovery, bone turnover with serum assays and histomorphometry, distal femur bone microstructure using in vivo microcomputed tomography, and femur and tibia resting-state bone BF after in vivo microsphere infusion. RESULTS: All SCI animals displayed immediate hindlimb paralysis. SCI without ABPT exhibited uncoupled bone turnover and progressive cancellous and cortical bone loss. qBWSTT did not prevent these deficits. In comparison, hindlimb bicycle training suppressed surface-level bone resorption indices without suppressing bone formation indices and produced robust cancellous and cortical bone recovery at the distal femur. No bone BF deficits existed 4 wk after SCI, and neither qBWSTT nor bicycle altered resting-state bone perfusion or locomotor recovery. However, proximal tibia BF correlated with several histomorphometry-derived bone formation and resorption indices at this skeletal site across SCI groups. CONCLUSIONS: These data indicate that passive-isokinetic bicycle training reversed cancellous and cortical bone loss after severe SCI through antiresorptive and/or bone anabolic actions, independent of locomotor recovery or changes in resting-state bone perfusion.


Assuntos
Osso e Ossos , Traumatismos da Medula Espinal , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Microtomografia por Raio-X , Traumatismos da Medula Espinal/terapia , Perfusão
12.
Am J Physiol Endocrinol Metab ; 300(4): E650-60, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21266670

RESUMO

Selective androgen receptor modulators (SARMs) now under development can protect against muscle and bone loss without causing prostate growth or polycythemia. 17ß-Hydroxyestra-4,9,11-trien-3-one (trenbolone), a potent testosterone analog, may have SARM-like actions because, unlike testosterone, trenbolone does not undergo tissue-specific 5α-reduction to form more potent androgens. We tested the hypothesis that trenbolone-enanthate (TREN) might prevent orchiectomy-induced losses in muscle and bone and visceral fat accumulation without increasing prostate mass or resulting in adverse hemoglobin elevations. Male F344 rats aged 3 mo underwent orchiectomy or remained intact and were administered graded doses of TREN, supraphysiological testosterone-enanthate, or vehicle for 29 days. In both intact and orchiectomized animals, all TREN doses and supraphysiological testosterone-enanthate augmented androgen-sensitive levator ani/bulbocavernosus muscle mass by 35-40% above shams (P ≤ 0.001) and produced a dose-dependent partial protection against orchiectomy-induced total and trabecular bone mineral density losses (P < 0.05) and visceral fat accumulation (P < 0.05). The lowest doses of TREN successfully maintained prostate mass and hemoglobin concentrations at sham levels in both intact and orchiectomized animals, whereas supraphysiological testosterone-enanthate and high-dose TREN elevated prostate mass by 84 and 68%, respectively (P < 0.01). In summary, low-dose administration of the non-5α-reducible androgen TREN maintains prostate mass and hemoglobin concentrations near the level of shams while producing potent myotrophic actions in skeletal muscle and partial protection against orchiectomy-induced bone loss and visceral fat accumulation. Our findings indicate that TREN has advantages over supraphysiological testosterone and supports the need for future preclinical studies examining the viability of TREN as an option for androgen replacement therapy.


Assuntos
Adiposidade/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Hemoglobinas/efeitos dos fármacos , Músculos/efeitos dos fármacos , Próstata/efeitos dos fármacos , Acetato de Trembolona/farmacologia , Adiposidade/fisiologia , Anabolizantes/farmacologia , Animais , Osso e Ossos/anatomia & histologia , Osso e Ossos/metabolismo , Avaliação Pré-Clínica de Medicamentos , Hemoglobinas/metabolismo , Terapia de Reposição Hormonal , Masculino , Músculos/anatomia & histologia , Músculos/metabolismo , Orquiectomia , Tamanho do Órgão/efeitos dos fármacos , Especificidade de Órgãos/efeitos dos fármacos , Projetos Piloto , Próstata/anatomia & histologia , Próstata/metabolismo , Ratos , Ratos Endogâmicos F344 , Testosterona/farmacologia
13.
J Appl Physiol (1985) ; 131(4): 1288-1299, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34473574

RESUMO

Diminished bone perfusion develops in response to disuse and has been proposed as a mechanism underlying bone loss. Bone blood flow (BF) has not been investigated within the unique context of severe contusion spinal cord injury (SCI), a condition that produces neurogenic bone loss that is precipitated by disuse and other physiological consequences of central nervous system injury. Herein, 4-mo-old male Sprague-Dawley rats received T9 laminectomy (SHAM) or laminectomy with severe contusion SCI (n = 20/group). Time course assessments of hindlimb bone microstructure and bone perfusion were performed in vivo at 1- and 2-wk postsurgery via microcomputed tomography (microCT) and intracardiac microsphere infusion, respectively, and bone turnover indices were determined via histomorphometry. Both groups exhibited cancellous bone loss beginning in the initial postsurgical week, with cancellous and cortical bone deficits progressing only in SCI thereafter. Trabecular bone deterioration coincided with uncoupled bone turnover after SCI, as indicated by signs of ongoing osteoclast-mediated bone resorption and a near-complete absence of osteoblasts and cancellous bone formation. Bone BF was not different between groups at 1 wk, when both groups displayed bone loss. In comparison, femur and tibia perfusion was 30%-40% lower in SCI versus SHAM at 2 wk, with the most pronounced regional BF deficits occurring at the distal femur. Significant associations existed between distal femur BF and cancellous and cortical bone loss indices. Our data provide the first direct evidence indicating that bone BF deficits develop in response to SCI and temporally coincide with suppressed bone formation and with cancellous and cortical bone deterioration.NEW & NOTEWORTHY We provide the first direct evidence indicating femur and tibia blood flow (BF) deficits exist in conscious (awake) rats after severe contusion spinal cord injury (SCI), with the distal femur displaying the largest BF deficits. Reduced bone perfusion temporally coincided with unopposed bone resorption, as indicated by ongoing osteoclast-mediated bone resorption and a near absence of surface-level bone formation indices, which resulted in severe cancellous and cortical microstructural deterioration after SCI.


Assuntos
Osteogênese , Traumatismos da Medula Espinal , Animais , Osso e Ossos , Masculino , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/complicações , Microtomografia por Raio-X
14.
Am J Physiol Endocrinol Metab ; 299(5): E841-7, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20739509

RESUMO

Bone may contain an intraskeletal reservoir of sex steroids that is capable of producing biological effects. The purposes of these experiments were to 1) establish and validate methods to extract and measure intraskeletal sex hormones, 2) compare serum and intraskeletal sex hormone abundance, and 3) determine the impact of testosterone-enanthate administration and orchiectomy on intraskeletal sex hormone concentrations. Tibiae from male F344 rats were crushed, suspended in an aqueous buffer, disrupted mechanically and sonically, extracted with organic solvents, dried, and reconstituted in assay buffer appropriate for measurement of testosterone, dihydrotestosterone, and estradiol by immunoassay. Prior to extraction, bone homogenate was spiked with [³H]testosterone, [³H]dihydrotestosterone, or [³H]estradiol, and >80% of each ³H-labeled sex hormone was recovered. Extracted bone samples were also assayed with and without known amounts of unlabeled sex hormones, and >97% of the expected hormone concentrations were measured. Administration of testosterone-enanthate increased intraskeletal testosterone 11-fold and intraskeletal dihydrotestosterone by 82% without altering intraskeletal estradiol (P < 0.01). Conversely, orchiectomy did not alter intraskeletal testosterone or estradiol but increased intraskeletal dihydrotestosterone by 39% (P < 0.05). In intact rats, intraskeletal testosterone and dihydrotestosterone were directionally higher than in serum, whereas intraskeletal estradiol was directionally lower than serum. Serum androgens were positively correlated with intraskeletal androgens (r = 0.74-0.96, P < 0.001); however, neither serum nor intraskeletal androgens nor serum estradiol were correlated with intraskeletal estradiol. We report the validation of a novel method for measuring intraskeletal sex hormones. Our findings demonstrate that the intraskeletal sex steroid reservoirs are modifiable and only partially influenced by circulating sex hormones.


Assuntos
Osso e Ossos/química , Di-Hidrotestosterona/análise , Estradiol/análise , Testosterona/análise , Animais , Osso e Ossos/ultraestrutura , Masculino , Projetos Piloto , Ratos , Ratos Endogâmicos F344 , Organismos Livres de Patógenos Específicos , Tomografia Computadorizada por Raios X
15.
Am J Physiol Endocrinol Metab ; 299(5): E730-40, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20739512

RESUMO

Insulin-like growth factor I (IGF-I) is a potent myogenic factor that plays a critical role in muscle regeneration and muscle hypertrophy. The purpose of this study was to evaluate the effect of IGF-I overexpression on the recovery of muscle size and function during reloading/reambulation after a period of cast immobilization in predominantly fast twitch muscles. In addition, we investigated concomitant molecular responses in IGF-I receptor and binding proteins (BPs). Recombinant adeno-associated virus vector for IGF-I (rAAV-IGF-IA) was injected into the anterior compartment of one of the hindlimbs of young (3 wk) C57BL6 female mice. At 20 wk of age, both hindlimbs were cast immobilized in a shortened position for 2 wk to unload the tibialis anterior (TA) and extensor longus digitorum (EDL) muscles. The TA and EDL muscles were removed bilaterally after 2 wk of cast immobilization and after 1 and 3 wk of free cage reambulation. Increases in IGF-I mRNA and protein levels with IGF-I overexpression were associated with significant increases in muscle wet weight, fiber size, and tetanic force, although overexpression did not protect against cast immobilization-induced muscle atrophy. After 1 wk of reambulation, evidence of enhanced muscle regeneration was noted in IGF-I-overexpressing muscles with an increased prevalence of central nuclei, embryonic myosin, and Pax7 positive fibers. We also observed larger relative gains in muscle size (wet weight and fiber area), but not force, during the 3-wk reambulation period in hindlimb muscles overexpressing IGF-I compared with contralateral control legs. Changes in IGFBP-5 mRNA expression during cast immobilization and reambulation paralleled those of IGF-I, whereas IGFBP-3 expression changed inversely to IGFBP-5.


Assuntos
Imobilização/fisiologia , Fator de Crescimento Insulin-Like I/genética , Fibras Musculares de Contração Rápida/fisiologia , Atrofia Muscular/fisiopatologia , Animais , Dependovirus/genética , Feminino , Técnicas de Transferência de Genes , Membro Posterior/fisiopatologia , Imuno-Histoquímica , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/genética , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Musculares/biossíntese , Proteínas Musculares/fisiologia , RNA/química , RNA/genética , Distribuição Aleatória , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Torção Mecânica , Caminhada/fisiologia
16.
Eur J Appl Physiol ; 109(4): 709-20, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20213470

RESUMO

The objective of this study was to determine the impact of treadmill locomotor training on the expression of insulin-like growth factor I (IGF1) and changes in myogenic regulatory factors (MRFs) in rat soleus muscle following spinal cord injury (SCI). Moderate, midthoracic (T(8)) contusion SCIs were produced using a NYU (New York University) impactor. Animals were randomly assigned to treadmill training or untrained groups. Rats in the training group were trained starting at 1 week after SCI, for either 3 bouts of 20 min over 1.5 days or 10 bouts over 5 days. Five days of treadmill training completely prevented the decrease in soleus fiber size resulting from SCI. In addition, treadmill training triggered increases in IGF1, MGF and IGFBP4 mRNA expression, and a concurrent reduction of IGFBP5 mRNA in skeletal muscle. Locomotor training also caused an increase in markers of muscle regeneration, including small muscle fibers expressing embryonic myosin and Pax7 positive nuclei and increased expression of the MRFs, myogenin and MyoD. We concluded that treadmill locomotor training ameliorated muscle atrophy in moderate contusion SCI rats. Training-induced muscle regeneration and fiber hypertrophy following SCI was associated with an increase in IGF1, an increase in Pax7 positive nuclei, and upregulation of MRFs.


Assuntos
Terapia por Exercício , Fator de Crescimento Insulin-Like I/metabolismo , Atividade Motora , Músculo Esquelético/metabolismo , Atrofia Muscular/terapia , Fatores de Regulação Miogênica/metabolismo , Condicionamento Físico Animal , Traumatismos da Medula Espinal/terapia , Animais , Modelos Animais de Doenças , Feminino , Hipertrofia , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Fator de Crescimento Insulin-Like I/genética , Desenvolvimento Muscular , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Atrofia Muscular/etiologia , Atrofia Muscular/metabolismo , Atrofia Muscular/fisiopatologia , Fatores de Regulação Miogênica/genética , Fatores de Transcrição Box Pareados/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor IGF Tipo 1/metabolismo , Regeneração , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/fisiopatologia , Fatores de Tempo
17.
Mech Ageing Dev ; 129(10): 593-601, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18762207

RESUMO

Aging is associated with progressive decline of skeletal muscle mass and function. This condition, termed sarcopenia, is associated with several adverse outcomes, including loss of autonomy and mortality. Due to the high prevalence of sarcopenia, a deeper understanding of its pathophysiology and possible remedies represents a high public health priority. Evidence suggests the existence of a relationship between declining growth hormone (GH) and insulin-like growth factor-1 (IGF-1) levels and age-related changes in body composition and physical function. Therefore, the age-dependent decline of GH and IGF-1 serum levels may promote frailty by contributing to the loss of muscle mass and strength. Preclinical studies showed that infusion of angiotensin II produced a marked reduction in body weight, accompanied by decreased serum and muscle levels of IGF-1. Conversely, overexpression of muscle-specific isoform of IGF-1 mitigates angiotensin II-induced muscle loss. Moreover, IGF-1 serum levels have been shown to increase following angiotensin converting enzyme inhibitors (ACEIs) treatment. Here we will review the most recent evidence regarding age-related changes of the GH/IGF-1 axis and its modulation by several interventions, including ACEIs which might represent a potential novel strategy to delay the onset and impede the progression of sarcopenia.


Assuntos
Envelhecimento , Hormônio do Crescimento/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Atrofia Muscular/fisiopatologia , Atrofia Muscular/terapia , Idoso , Angiotensina II/metabolismo , Peso Corporal , Humanos , Hipotálamo/patologia , Modelos Biológicos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculos/metabolismo
18.
Med Sci Sports Exerc ; 40(1): 104-10, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18091016

RESUMO

UNLABELLED: Oral administration of the amino acid/inhibitory neurotransmitter gamma aminobutyric acid (GABA) reportedly elevates resting serum growth hormone (GH) concentrations. PURPOSE: To test the hypothesis that GABA ingestion stimulates immunoreactive GH (irGH) and immunofunctional GH (ifGH) release at rest and that GABA augments the resistance exercise-induced irGH/ifGH responses. METHODS: Eleven resistance-trained men (18-30 yr) participated in this randomized, double-blind, placebo-controlled, crossover study. During each experimental bout, participants ingested either 3 g of GABA or sucrose placebo (P), followed either by resting or resistance exercise sessions. Fasting venous blood samples were acquired immediately before and at 15, 30, 45, 60, 75, and 90 min after GABA or P ingestion and were assayed for irGH and ifGH. RESULTS: At rest, GABA ingestion elevated both irGH and ifGH compared with placebo. Specifically, peak concentrations of both hormones were elevated by about 400%, and the area under the curve (AUC) was elevated by about 375% (P < 0.05). Resistance exercise (EX-P) elevated time-point (15-60 min) irGH and ifGH concentrations compared with rest (P < 0.05). The combination of GABA and resistance exercise (EX-GABA) also elevated the peak, AUC, and the 15- to 60-min time-point irGH and ifGH responses compared with resting conditions (P < 0.05). Additionally, 200% greater irGH (P < 0.01) and 175% greater ifGH (P < 0.05) concentrations were observed in the EX-GABA than in the EX-P condition, 30 min after ingestion. GABA ingestion did not alter the irGH to ifGH ratio, and, under all conditions, ifGH represented approximately 50% of irGH. CONCLUSIONS: Our data indicate that ingested GABA elevates resting and postexercise irGH and ifGH concentrations. The extent to which irGH/ifGH secretion contributes to skeletal muscle hypertrophy is unknown, although augmenting the postexercise irGH/ifGH response may improve resistance training-induced muscular adaptations.


Assuntos
Exercício Físico/fisiologia , Hormônio do Crescimento/fisiologia , Contração Muscular/efeitos dos fármacos , Músculo Esquelético/fisiologia , Descanso/fisiologia , Ácido gama-Aminobutírico/farmacologia , Aminoácidos , Hormônio do Crescimento/sangue , Hormônio do Crescimento/efeitos dos fármacos , Humanos , Masculino , Contração Muscular/fisiologia , Músculo Esquelético/efeitos dos fármacos , Isoformas de Proteínas , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
19.
J Strength Cond Res ; 22(4): 1205-14, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18545187

RESUMO

The purpose of this study was to evaluate the early-phase muscular performance adaptations to 5 weeks of traditional (TRAD) and eccentric-enhanced (ECC+) progressive resistance training and to compare the acute postexercise total testosterone (TT), bioavailable testosterone (BT), growth hormone (GH), and lactate responses in TRAD- and ECC+-trained individuals. Twenty-two previously untrained men (22.1 +/- 0.8 years) completed 1 familiarization and 2 baseline bouts, 15 exercise bouts (i.e., 3 times per week for 5 weeks), and 2 postintervention testing bouts. Anthropometric and 1 repetition maximum (1RM) measurements (i.e., bench press and squat) were assessed during both baseline and postintervention testing. Following baseline testing, participants were randomized into TRAD (4 sets of 6 repetitions at 52.5% 1RM) or ECC+ (3 sets of 6 repetitions at 40% 1RM concentric and 100% 1RM eccentric) groups and completed the 5-week progressive resistance training protocols. During the final exercise bout, blood samples acquired at rest and following exercise were assessed for serum TT, BT, GH, and blood lactate. Both groups experienced similar increases in bench press (approximately 10%) and squat (approximately 22%) strength during the exercise intervention. At the conclusion of training, postexercise TT and BT concentrations increased (approximately 13% and 21%, respectively, p < 0.05) and GH concentrations increased (approximately 750-1200%, p < 0.05) acutely following exercise in both protocols. Postexercise lactate accumulation was similar between the TRAD (5.4 +/- 0.4) and ECC+ (5.6 +/- 0.4) groups; however, the ECC+ group's lactate concentrations were significantly lower than those of the TRAD group 30 to 60 minutes into recovery. In conclusion, TRAD training and ECC+ training appear to result in similar muscular strength adaptations and neuroendocrine responses, while postexercise lactate clearance is enhanced following ECC+ training.


Assuntos
Adaptação Fisiológica , Hormônio do Crescimento Humano/sangue , Ácido Láctico/sangue , Força Muscular/fisiologia , Educação Física e Treinamento/métodos , Testosterona/sangue , Adulto , Humanos , Masculino , Músculo Esquelético/fisiologia , Esforço Físico/fisiologia
20.
J Cachexia Sarcopenia Muscle ; 9(3): 465-481, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29542875

RESUMO

BACKGROUND: Inconsistent fat-free mass (FFM) and muscle strength responses have been reported in randomized clinical trials (RCTs) administering testosterone replacement therapy (TRT) to middle-aged and older men. Our objective was to conduct a meta-analysis to determine whether TRT improves FFM and muscle strength in middle-aged and older men and whether the muscular responses vary by TRT administration route. METHODS: Systematic literature searches of MEDLINE/PubMed and the Cochrane Library were conducted from inception through 31 March 2017 to identify double-blind RCTs that compared intramuscular or transdermal TRT vs. placebo and that reported assessments of FFM or upper-extremity or lower-extremity strength. Studies were identified, and data were extracted and validated by three investigators, with disagreement resolved by consensus. Using a random effects model, individual effect sizes (ESs) were determined from 31 RCTs reporting FFM (sample size: n = 1213 TRT, n = 1168 placebo) and 17 reporting upper-extremity or lower-extremity strength (n = 2572 TRT, n = 2523 placebo). Heterogeneity was examined, and sensitivity analyses were performed. RESULTS: When administration routes were collectively assessed, TRT was associated with increases in FFM [ES = 1.20 ± 0.15 (95% CI: 0.91, 1.49)], total body strength [ES = 0.90 ± 0.12 (0.67, 1.14)], lower-extremity strength [ES = 0.77 ± 0.16 (0.45, 1.08)], and upper-extremity strength [ES = 1.13 ± 0.18 (0.78, 1.47)] (P < 0.001 for all). When administration routes were evaluated separately, the ES magnitudes were larger and the per cent changes were 3-5 times greater for intramuscular TRT than for transdermal formulations vs. respective placebos, for all outcomes evaluated. Specifically, intramuscular TRT was associated with a 5.7% increase in FFM [ES = 1.49 ± 0.18 (1.13, 1.84)] and 10-13% increases in total body strength [ES = 1.39 ± 0.12 (1.15, 1.63)], lower-extremity strength [ES = 1.39 ± 0.17 (1.07, 1.72)], and upper-extremity strength [ES = 1.37 ± 0.17 (1.03, 1.70)] (P < 0.001 for all). In comparison, transdermal TRT was associated with only a 1.7% increase in FFM [ES = 0.98 ± 0.21 (0.58, 1.39)] and only 2-5% increases in total body [ES = 0.55 ± 0.17 (0.22, 0.88)] and upper-extremity strength [ES = 0.97 ± 0.24 (0.50, 1.45)] (P < 0.001). Interestingly, transdermal TRT produced no change in lower-extremity strength vs. placebo [ES = 0.26 ± 0.23 (-0.19, 0.70), P = 0.26]. Subanalyses of RCTs limiting enrolment to men ≥60 years of age produced similar results. CONCLUSIONS: Intramuscular TRT is more effective than transdermal formulations at increasing LBM and improving muscle strength in middle-aged and older men, particularly in the lower extremities.


Assuntos
Músculo Esquelético/efeitos dos fármacos , Testosterona/farmacologia , Fatores Etários , Vias de Administração de Medicamentos , Terapia de Reposição Hormonal/efeitos adversos , Terapia de Reposição Hormonal/métodos , Humanos , Masculino , Força Muscular , Ensaios Clínicos Controlados Aleatórios como Assunto , Testosterona/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA