Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Chemistry ; 29(55): e202301704, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37432093

RESUMO

Semiconducting single walled carbon nanotubes (SWCNTs) are promising materials for biosensing applications with electrolyte-gated transistors (EGT). However, to be employed in EGT devices, SWCNTs often require lengthy solution-processing fabrication techniques. Here, we introduce a simple solution-based method that allows fabricating EGT devices from stable dispersions of SWCNTs/bovine serum albumin (BSA) hybrids in water. The dispersion is then deposited on a substrate allowing the formation of a SWCNTs random network as the semiconducting channel. We demonstrate that this methodology allows the fabrication of EGT devices with electric performances that allow their use in biosensing applications. We demonstrate their application for the detection of cortisol in solution, upon gate electrode functionalization with anti-cortisol antibodies. This is a robust and cost-effective methodology that sets the ground for a SWCNT/BSA-based biosensing platform that allows overcoming many limitations of standard SWCNTs biosensor fabrications.


Assuntos
Técnicas Biossensoriais , Nanotubos de Carbono , Soroalbumina Bovina , Técnicas Biossensoriais/métodos , Eletrólitos
2.
Molecules ; 27(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36432180

RESUMO

The thermodynamic and kinetic properties for heterogeneous electron transfer (ET) were measured for the electrode-immobilized small laccase (SLAC) from Streptomyces coelicolor subjected to different electrostatic and covalent protein-electrode linkages, using cyclic voltammetry. Once immobilized electrostatically onto a gold electrode using mixed carboxyl- and hydroxy-terminated alkane-thiolate SAMs or covalently exploiting the same SAM subjected to N-hydroxysuccinimide+1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (NHS-EDC) chemistry, the SLAC-electrode electron flow occurs through the T1 center. The E°' values (from +0.2 to +0.1 V vs. SHE at pH 7.0) are lower by more than 0.2 V compared to the protein either in solution or immobilized with different anchoring strategies using uncharged SAMs. For the present electrostatic and covalent binding, this effect can, respectively, be ascribed to the negative charge of the SAM surfaces and to deletion of the positive charge of Lys/Arg residues due to amide bond formation which both selectively stabilize the more positively charged oxidized SLAC. Observation of enthalpy/entropy compensation within the series indicates that the immobilized proteins experience different reduction-induced solvent reorganization effects. The E°' values for the covalently attached SLAC are sensitive to three acid base equilibria, with apparent pKa values of pKa1ox = 5.1, pKa1red = 7.5, pKa2ox = 8.4, pKa2red = 10.9, pKa2ox = 8.9, pKa2red = 11.3 possibly involving one residue close to the T1 center and two residues (Lys and/or Arg) along with moderate protein unfolding, respectively. Therefore, the E°' value of immobilized SLAC turns out to be particularly sensitive to the anchoring mode and medium conditions.


Assuntos
Lacase , Streptomyces coelicolor , Lacase/química , Cinética , Elétrons , Eletrodos , Termodinâmica
3.
Molecules ; 27(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36080396

RESUMO

The Met80Ala variant of yeast cytochrome c is known to possess electrocatalytic properties that are absent in the wild type form and that make it a promising candidate for biocatalysis and biosensing. The versatility of an enzyme is enhanced by the stability in mixed aqueous/organic solvents that would allow poorly water-soluble substrates to be targeted. In this work, we have evaluated the effect of dimethylsulfoxide (DMSO) on the functionality of the Met80Ala cytochrome c mutant, by investigating the thermodynamics and kinetics of electron transfer in mixed water/DMSO solutions up to 50% DMSO v/v. In parallel, we have monitored spectroscopically the retention of the main structural features in the same medium, focusing on both the overall protein structure and the heme center. We found that the organic solvent exerts only minor effects on the redox and structural properties of the mutant mostly as a result of the modification of the dielectric constant of the solvent. This would warrant proper functionality of this variant also under these potentially hostile experimental conditions, that differ from the physiological milieu of cytochrome c.


Assuntos
Citocromos c , Dimetil Sulfóxido , Citocromos c/metabolismo , Dimetil Sulfóxido/química , Cinética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Solventes , Termodinâmica , Água
4.
Molecules ; 26(16)2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34443538

RESUMO

Cytochrome c is a small globular protein whose main physiological role is to shuttle electrons within the mitochondrial electron transport chain. This protein has been widely investigated, especially as a paradigmatic system for understanding the fundamental aspects of biological electron transfer and protein folding. Nevertheless, cytochrome c can also be endowed with a non-native catalytic activity and be immobilized on an electrode surface for the development of third generation biosensors. Here, an overview is offered of the most significant examples of such a functional transformation, carried out by either point mutation(s) or controlled unfolding. The latter can be induced chemically or upon protein immobilization on hydrophobic self-assembled monolayers. We critically discuss the potential held by these systems as core constituents of amperometric biosensors, along with the issues that need to be addressed to optimize their applicability and response.


Assuntos
Técnicas Biossensoriais , Elétrons , Proteínas/metabolismo , Eletroquímica , Oxirredução , Mutação Puntual/genética , Dobramento de Proteína , Proteínas/química , Proteínas/genética
5.
Hum Mol Genet ; 27(24): 4263-4272, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30215711

RESUMO

Congenital myopathies are typically characterised by early onset hypotonia, weakness and hallmark features on biopsy. Despite the rapid pace of gene discovery, ∼50% of patients with a congenital myopathy remain without a genetic diagnosis following screening of known disease genes. We performed exome sequencing on two consanguineous probands diagnosed with a congenital myopathy and muscle biopsy showing selective atrophy/hypotrophy or absence of type II myofibres. We identified variants in the gene (MYL1) encoding the skeletal muscle fast-twitch specific myosin essential light chain (ELC) in both probands. A homozygous essential splice acceptor variant (c.479-2A > G, predicted to result in skipping of exon 5 was identified in Proband 1, and a homozygous missense substitution (c.488T>G, p.(Met163Arg)) was identified in Proband 2. Protein modelling of the p.(Met163Arg) substitution predicted it might impede intermolecular interactions that facilitate binding to the IQ domain of myosin heavy chain, thus likely impacting on the structure and functioning of the myosin motor. MYL1 was markedly reduced in skeletal muscle from both probands, suggesting that the missense substitution likely results in an unstable protein. Knock down of myl1 in zebrafish resulted in abnormal morphology, disrupted muscle structure and impaired touch-evoked escape responses, thus confirming that skeletal muscle fast-twitch specific myosin ELC is critical for myofibre development and function. Our data implicate MYL1 as a crucial protein for adequate skeletal muscle function and that MYL1 deficiency is associated with severe congenital myopathy.


Assuntos
Músculo Esquelético/fisiopatologia , Cadeias Leves de Miosina/genética , Miotonia Congênita/genética , Alelos , Animais , Consanguinidade , Modelos Animais de Doenças , Exoma/genética , Homozigoto , Humanos , Masculino , Músculo Esquelético/metabolismo , Mutação , Cadeias Pesadas de Miosina/genética , Miotonia Congênita/fisiopatologia , Linhagem , Peixe-Zebra/genética
6.
Anal Chem ; 92(13): 9330-9337, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32483968

RESUMO

Electrolyte gated organic transistors can operate as powerful ultrasensitive biosensors, and efforts are currently devoted to devising strategies for reducing the contribution of hardly avoidable, nonspecific interactions to their response, to ultimately harness selectivity in the detection process. We report a novel lab-on-a-chip device integrating a multigate electrolyte gated organic field-effect transistor (EGOFET) with a 6.5 µL microfluidics set up capable to provide an assessment of both the response reproducibility, by enabling measurement in triplicate, and of the device selectivity through the presence of an internal reference electrode. As proof-of-concept, we demonstrate the efficient operation of our pentacene based EGOFET sensing platform through the quantification of tumor necrosis factor alpha with a detection limit as low as 3 pM. Sensing of inflammatory cytokines, which also include TNFα, is of the outmost importance for monitoring a large number of diseases. The multiplexable organic electronic lab-on-chip provides a statistically solid, reliable, and selective response on microliters sample volumes on the minutes time scale, thus matching the relevant key-performance indicators required in point-of-care diagnostics.


Assuntos
Técnicas Biossensoriais/métodos , Fator de Necrose Tumoral alfa/análise , Aptâmeros de Peptídeos/química , Aptâmeros de Peptídeos/metabolismo , Infecções Bacterianas/metabolismo , Infecções Bacterianas/patologia , Técnicas Biossensoriais/instrumentação , Eletrodos , Ouro/química , Humanos , Dispositivos Lab-On-A-Chip , Limite de Detecção , Transistores Eletrônicos , Fator de Necrose Tumoral alfa/metabolismo
7.
J Biol Inorg Chem ; 25(3): 467-487, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32189145

RESUMO

The interaction of cytochrome c with cardiolipin (CL) is a critical step in the initial stages of apoptosis and is mediated by a positively charged region on the protein surface comprising several lysine residues (site A). Here, the interaction of wt S. cerevisiae cytochrome c (ycc) and its K72A/K73A, K72A/K79A, K73A/K79A and K72A/K73A/K79A variants with CL was studied through UV-Vis and MCD spectroscopies at pH 7 and molecular dynamics (MD) simulations, to clarify the role of the mutated lysines. Moreover, the influence of the lipid to protein ratio on the interaction mechanism was investigated using low (0.5-10) and high (5-60) CL/ycc molar ratios, obtained with small and gradual or large and abrupt CL additions, respectively. Although all proteins bind to CL, switching from the native low-spin His/Met-ligated form to a low-spin bis-His conformer and to a high-spin species at larger CL concentrations, the two schemes of CL addition show relevant differences in the CL/ycc molar ratios at which the various conformers appear, due to differences in the interaction mechanism. Extended lipid anchorage and peripheral binding appear to prevail at low and high CL/ycc molar ratios, respectively. Simultaneous deletion of two or three surface positive charges from Site A does not abolish CL binding, but instead increases protein affinity for CL. MD calculations suggest this unexpected behavior results from the mutation-induced severe weakening of the H-bond connecting the Nε of His26 with the backbone oxygen of Glu44, which lowers the conformational stability compared to the wt species, overcoming the decreased surface electrostatic interaction.


Assuntos
Alanina/química , Cardiolipinas/química , Citocromos c/química , Lisina/química , Proteínas de Saccharomyces cerevisiae/química , Alanina/genética , Animais , Sítios de Ligação , Bovinos , Citocromos c/genética , Coração , Lisina/genética , Simulação de Dinâmica Molecular , Estrutura Molecular , Mutação , Proteínas de Saccharomyces cerevisiae/genética , Eletricidade Estática , Propriedades de Superfície
8.
Inorg Chem ; 57(1): 86-97, 2018 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-29232119

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are Cu-containing enzymes that facilitate the degradation of recalcitrant polysaccharides by the oxidative cleavage of glycosidic bonds. They are gaining rapidly increasing attention as key players in biomass conversion, especially for the production of second-generation biofuels. Elucidation of the detailed mechanism of the LPMO reaction is a major step toward the assessment and optimization of LPMO efficacy in industrial biotechnology, paving the way to utilization of sustainable fuel sources. Here, we used density functional theory calculations to study the reaction pathways suggested to date, exploiting a very large active-site model for a fungal AA9 LPMO and using a celloheptaose unit as a substrate mimic. We identify a copper oxyl intermediate as being responsible for H-atom abstraction from the substrate, followed by a rapid, water-assisted hydroxyl rebound, leading to substrate hydroxylation.


Assuntos
Oxigenases de Função Mista/metabolismo , Neurospora crassa/enzimologia , Polissacarídeos/metabolismo , Teoria Quântica , Biocatálise , Oxigenases de Função Mista/química , Modelos Moleculares , Polissacarídeos/química
9.
Chem Soc Rev ; 46(1): 40-71, 2017 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-27722675

RESUMO

Self-assembly is possibly the most effective and versatile strategy for surface functionalization. Self-assembled monolayers (SAMs) can be formed on (semi-)conductor and dielectric surfaces, and have been used in a variety of technological applications. This work aims to review the strategy behind the design and use of self-assembled monolayers in organic electronics, discuss the mechanism of interaction of SAMs in a microscopic device, and highlight the applications emerging from the integration of SAMs in an organic device. The possibility of performing surface chemistry tailoring with SAMs constitutes a versatile approach towards the tuning of the electronic and morphological properties of the interfaces relevant to the response of an organic electronic device. Functionalisation with SAMs is important not only for imparting stability to the device or enhancing its performance, as sought at the early stages of development of this field. SAM-functionalised organic devices give rise to completely new types of behavior that open unprecedented applications, such as ultra-sensitive label-free biosensors and SAM/organic transistors that can be used as robust experimental gauges for studying charge tunneling across SAMs.

10.
Biochim Biophys Acta ; 1857(8): 1300-1306, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27033304

RESUMO

Lon protease is a nuclear-encoded, mitochondrial ATP-dependent protease highly conserved throughout the evolution, crucial for the maintenance of mitochondrial homeostasis. Lon acts as a chaperone of misfolded proteins, and is necessary for maintaining mitochondrial DNA. The impairment of these functions has a deep impact on mitochondrial functionality and morphology. An altered expression of Lon leads to a profound reprogramming of cell metabolism, with a switch from respiration to glycolysis, which is often observed in cancer cells. Mutations of Lon, which likely impair its chaperone properties, are at the basis of a genetic inherited disease named of the cerebral, ocular, dental, auricular, skeletal (CODAS) syndrome. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.


Assuntos
Anormalidades Craniofaciais/genética , DNA Mitocondrial/genética , Anormalidades do Olho/genética , Transtornos do Crescimento/genética , Luxação Congênita de Quadril/genética , Mitocôndrias/enzimologia , Chaperonas Moleculares/química , Mutação , Osteocondrodisplasias/genética , Protease La/química , Anormalidades Dentárias/genética , Reprogramação Celular , Anormalidades Craniofaciais/enzimologia , Anormalidades Craniofaciais/patologia , DNA Mitocondrial/metabolismo , Anormalidades do Olho/enzimologia , Anormalidades do Olho/patologia , Transtornos do Crescimento/enzimologia , Transtornos do Crescimento/patologia , Luxação Congênita de Quadril/enzimologia , Luxação Congênita de Quadril/patologia , Homeostase , Humanos , Mitocôndrias/patologia , Modelos Moleculares , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Osteocondrodisplasias/enzimologia , Osteocondrodisplasias/patologia , Protease La/genética , Protease La/metabolismo , Dobramento de Proteína , Anormalidades Dentárias/enzimologia , Anormalidades Dentárias/patologia
11.
J Biol Inorg Chem ; 22(4): 615-623, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28378164

RESUMO

Neuroglobin (Ngb) is a recently identified hexa-coordinated globin, expressed in the nervous system of humans. Its physiological role is still debated: one hypothesis is that Ngb serves as an electron transfer (ET) species, possibly by reducing cytochrome c and preventing it to initiate the apoptotic cascade. Here, we use the perturbed matrix method (PMM), a mixed quantum mechanics/molecular dynamics approach, to investigate the redox thermodynamics of two neuroglobins, namely the human Ngb and GLB-6 from invertebrate Caenorhabditis elegans. In particular, we calculate the reduction potential of the two globins, resulting in an excellent agreement with the experimental values, and we predict the reorganization energies, λ, which have not been determined experimentally yet. The calculated λ values match well those reported for known ET proteins and thereby support a potential involvement in vivo of the two globins in ET processes.


Assuntos
Globinas/química , Simulação de Dinâmica Molecular , Proteínas do Tecido Nervoso/química , Teoria Quântica , Transporte de Elétrons , Neuroglobina , Termodinâmica
12.
Proc Natl Acad Sci U S A ; 111(15): 5556-61, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24706771

RESUMO

Electronic coupling to electrodes, Γ, as well as that across the examined molecules, H, is critical for solid-state electron transport (ETp) across proteins. Assessing the importance of each of these couplings helps to understand the mechanism of electron flow across molecules. We provide here experimental evidence for the importance of both couplings for solid-state ETp across the electron-mediating protein cytochrome c (CytC), measured in a monolayer configuration. Currents via CytC are temperature-independent between 30 and ∼130 K, consistent with tunneling by superexchange, and thermally activated at higher temperatures, ascribed to steady-state hopping. Covalent protein-electrode binding significantly increases Γ, as currents across CytC mutants, bound covalently to the electrode via a cysteine thiolate, are higher than those through electrostatically adsorbed CytC. Covalent binding also reduces the thermal activation energy, Ea, of the ETp by more than a factor of two. The importance of H was examined by using a series of seven CytC mutants with cysteine residues at different surface positions, yielding distinct electrode-protein(-heme) orientations and separation distances. We find that, in general, mutants with electrode-proximal heme have lower Ea values (from high-temperature data) and higher conductance at low temperatures (in the temperature-independent regime) than those with a distal heme. We conclude that ETp across these mutants depends on the distance between the heme group and the top or bottom electrode, rather than on the total separation distance between electrodes (protein width).


Assuntos
Citocromos c/metabolismo , Condutividade Elétrica , Eletrodos , Transporte de Elétrons/fisiologia , Animais , Citocromos c/genética , Escherichia coli , Heme/metabolismo , Cavalos , Mutagênese Sítio-Dirigida , Mutação/genética , Ligação Proteica , Temperatura
13.
Anal Chem ; 88(24): 12330-12338, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-28193067

RESUMO

Biorecognition is a central event in biological processes in the living systems that is also widely exploited in technological and health applications. We demonstrate that the Electrolyte Gated Organic Field Effect Transistor (EGOFET) is an ultrasensitive and specific device that allows us to quantitatively assess the thermodynamics of biomolecular recognition between a human antibody and its antigen, namely, the inflammatory cytokine TNFα at the solid/liquid interface. The EGOFET biosensor exhibits a superexponential response at TNFα concentration below 1 nM with a minimum detection level of 100 pM. The sensitivity of the device depends on the analyte concentration, reaching a maximum in the range of clinically relevant TNFα concentrations when the EGOFET is operated in the subthreshold regime. At concentrations greater than 1 nM the response scales linearly with the concentration. The sensitivity and the dynamic range are both modulated by the gate voltage. These results are explained by establishing the correlation between the sensitivity and the density of states (DOS) of the organic semiconductor. Then, the superexponential response arises from the energy-dependence of the tail of the DOS of the HOMO level. From the gate voltage-dependent response, we extract the binding constant, as well as the changes of the surface charge and the effective capacitance accompanying biorecognition at the electrode surface. Finally, we demonstrate the detection of TNFα in human-plasma derived samples as an example for point-of-care application.


Assuntos
Técnicas Biossensoriais/instrumentação , Transistores Eletrônicos , Fator de Necrose Tumoral alfa/sangue , Capacitância Elétrica , Desenho de Equipamento , Humanos , Dispositivos Lab-On-A-Chip , Semicondutores , Termodinâmica
14.
Future Oncol ; 12(8): 1039-44, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26880307

RESUMO

BACKGROUND: The most appropriate management of recurrent glioblastoma is still controversial. In particular, the role of surgery at recurrence remains uncertain. PATIENTS & METHODS: From our Institutional data warehouse we analyzed 270 consecutive patients who received second surgery for recurrent glioblastoma, to assess survival after second surgery, and to evaluate prognostic factors. RESULTS: Complete resection was found in 128 (47.4%) and partial resection in 142 patients (52.6%). Median survival from second surgery was 11.4 months (95% CI: 10.0-12.7). Multivariate analysis showed that age (p = 0.001), MGMT methylation (p = 0.021) and extent of surgery (p < 0.001) are associated with better survival. CONCLUSION: A complete resection should be the goal for second resection and younger age and MGMT methylation status might be considered in the selection of patients.


Assuntos
Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/cirurgia , Glioblastoma/patologia , Glioblastoma/cirurgia , Adolescente , Adulto , Idoso , Biomarcadores Tumorais , Neoplasias Encefálicas/mortalidade , Terapia Combinada , Metilação de DNA , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Gerenciamento Clínico , Feminino , Glioblastoma/mortalidade , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia , Prognóstico , Retratamento , Tomografia Computadorizada por Raios X , Resultado do Tratamento , Proteínas Supressoras de Tumor/genética , Adulto Jovem
15.
J Biol Inorg Chem ; 20(3): 531-40, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25627142

RESUMO

Mitochondrial cytochrome c (cytc) plays an important role in programmed cell death upon binding to cardiolipin (CL), a negatively charged phospholipid of the inner mitochondrial membrane (IMM). Although this binding has been thoroughly investigated in solution, little is known on the nature and reactivity of the adduct (cytc-CL) immobilized at IMM. In this work, we have studied electrochemically cytc-CL immobilized on a hydrophobic self-assembled monolayer (SAM) of decane-1-thiol. This construct would reproduce the motional restriction and the nonpolar environment experienced by cytc-CL at IMM. Surface-enhanced resonance Raman (SERR) studies allowed the axial heme iron ligands to be identified, which were found to be oxidation state dependent and differ from those of cytc-CL in solution. In particular, immobilized cytc-CL experiences an equilibrium between a low-spin (LS) 6c His/His and a high-spin (HS) 5c His/- coordination states. The former prevails in the oxidized and the latter in the reduced form. Axial coordination of the ferric heme thus differs from the (LS) 6c His/Lys and (LS) 6c His/OH(-) states observed in solution. Moreover, a relevant finding is that the immobilized ferrous cytc-CL is able to catalytically reduce dioxygen, likely to superoxide ion. These findings indicate that restriction of motional freedom due to interaction with the membrane is an additional factor playing in the mechanism of cytc unfolding and cytc-mediated peroxidation functional to the apoptosis cascade.


Assuntos
Cardiolipinas/metabolismo , Citocromos c/química , Citocromos c/metabolismo , Enzimas Imobilizadas/química , Heme/química , Oxigênio/química , Cardiolipinas/química , Citocromos c/genética , Eletroquímica , Variação Genética , Oxirredução , Ligação Proteica , Análise Espectral Raman
16.
Org Biomol Chem ; 13(45): 11003-13, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26381463

RESUMO

The wide range of variability of the reduction potential (E(0)) of blue-copper proteins has been the subject of a large number of studies in the past several years. In particular, a series of azurin mutants have been recently rationally designed tuning E(0) over a very broad range (700 mV) without significantly altering the redox-active site [Marshall et al., Nature, 2009, 462, 113]. This clearly suggests that interactions outside the primary coordination sphere are relevant to determine E(0) in cupredoxins. However, the molecular determinants of the redox potential variability are still undisclosed. Here, by means of atomistic molecular dynamics simulations and hybrid quantum/classical calculations, the mechanisms that determine the E(0) shift of two azurin mutants with high potential shifts are unravelled. The reduction potentials of native azurin and of the mutants are calculated obtaining results in good agreement with the experiments. The analysis of the simulations reveals that only a small number of residues (including non-mutated ones) are relevant in determining the experimentally observed E(0) variation via site-specific, but diverse, mechanisms. These findings open the path to the rational design of new azurin mutants with different E(0).


Assuntos
Azurina/química , Pseudomonas aeruginosa/química , Azurina/genética , Simulação de Dinâmica Molecular , Oxirredução , Mutação Puntual , Pseudomonas aeruginosa/genética , Teoria Quântica
17.
J Am Chem Soc ; 136(37): 12929-37, 2014 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-25184441

RESUMO

Thermodynamic and dynamic properties of iso-1-cytochrome c covalently bound to a bare gold surface are here investigated by large scale atomistic simulations. The reduction potential of the protein for low and high surface concentrations is calculated showing a good agreement with experimental estimates. The origin of the dependence of the reduction potential on the surface concentration is investigated and is demonstrated to stem from the changing polarizability of the environment surrounding the protein, a mechanism reminiscent of crowding effects. Moreover, structural analyses are performed revealing relevant changes induced by the presence of the electrode on the dynamic properties of cytochrome c. In particular, one of the two cavities previously identified on the protein surface [Bortolotti et al. J. Am. Chem. Soc., 2012, 134, 13670], and that reversibly open in cytochrome c freely diffusing in solution, is found to be deformed when the protein is adsorbed on gold. This modification exemplifies a mechanism that potentially leads to changes in the protein properties by surface-induced modification of its dynamical behavior.


Assuntos
Citocromos c/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Adsorção , Ouro/química , Proteínas Imobilizadas/química , Modelos Moleculares , Oxirredução , Propriedades de Superfície , Termodinâmica
18.
Neurosurg Focus ; 37(3): E2, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25175439

RESUMO

A long-held dogma in neurosurgery is that parenchymal arteriovenous malformations (AVMs) are congenital. However, there is no strong evidence supporting this theory. An increasing number of documented cases of de novo formation of parenchymal AVMs cast doubt on their congenital nature and suggest that indeed the majority of these lesions may form after birth. Further evidence suggesting the postnatal development of parenchymal AVMs comes from the exceedingly rare diagnosis of these lesions in utero despite the widespread availability of high-resolution imaging modalities such as ultrasound and fetal MRI. The exact mechanism of AVM formation has yet to be elucidated, but most likely involves genetic susceptibility and environmental triggering factors. In this review, the authors report 2 cases of de novo AVM formation and analyze the evidence suggesting that they represent an acquired condition.


Assuntos
Malformações Arteriovenosas/genética , Malformações Arteriovenosas/cirurgia , Predisposição Genética para Doença/genética , Procedimentos Neurocirúrgicos , Adulto , Animais , Malformações Arteriovenosas/diagnóstico , Feminino , Humanos , Angiografia por Ressonância Magnética , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade
19.
BMJ Case Rep ; 17(8)2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39159980

RESUMO

Carotid-cavernous fistulas (CCFs) are rare intracranial vascular malformations. Among the various classifications available, the most recently proposed highlights the strong correlation between venous drainage pattern and clinical presentation. We present the case of a woman in her 70s with a history of transient palsy of the fourth cranial nerve who presented with subacute cervical myelopathy, which was caused by a CCF with venous drainage into the peribulbar and perimedullary plexus.Given this atypical presentation of CCF and the diagnostic challenges it poses, we conducted a comprehensive PubMed search looking for CCFs presenting with cervical myelopathy and our results confirmed their rarity and allowed us to identify clinical elements that may help clinicians diagnose and manage this potentially treatable condition.


Assuntos
Fístula Carótido-Cavernosa , Vértebras Cervicais , Doenças da Medula Espinal , Humanos , Feminino , Fístula Carótido-Cavernosa/complicações , Fístula Carótido-Cavernosa/diagnóstico , Fístula Carótido-Cavernosa/terapia , Vértebras Cervicais/diagnóstico por imagem , Doenças da Medula Espinal/diagnóstico por imagem , Doenças da Medula Espinal/diagnóstico , Doenças da Medula Espinal/complicações , Idoso , Imageamento por Ressonância Magnética
20.
Life (Basel) ; 14(2)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38398759

RESUMO

We report a patient suffering from spontaneous intracranial hypotension (SIH) who, following a non-selective lumbar blood patch, returned to his healthcare provider with severe symptoms of neurological deficits. It was subsequently discovered that the aforementioned deficits were due to a bilateral subdural hematoma, and an emergency surgical drainage of the hematoma has been performed. However, the hematoma reformed and potential cerebrospinal fluid leakage was consequently investigated through myelography. Following the diagnostic finding of a venous diverticulum, a selective blood patch was executed in the affected area, and in order to stabilize the hematoma, an embolization of the middle meningeal arteries was performed. The combination of such operations allowed for the resorption of the hematoma and the improvement of neurological symptoms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA