RESUMO
Transcriptomics data have been integrated with genome-wide association studies (GWASs) to help understand disease/trait molecular mechanisms. The utility of metabolomics, integrated with transcriptomics and disease GWASs, to understand molecular mechanisms for metabolite levels or diseases has not been thoroughly evaluated. We performed probabilistic transcriptome-wide association and locus-level colocalization analyses to integrate transcriptomics results for 49 tissues in 706 individuals from the GTEx project, metabolomics results for 1,391 plasma metabolites in 6,136 Finnish men from the METSIM study, and GWAS results for 2,861 disease traits in 260,405 Finnish individuals from the FinnGen study. We found that genetic variants that regulate metabolite levels were more likely to influence gene expression and disease risk compared to the ones that do not. Integrating transcriptomics with metabolomics results prioritized 397 genes for 521 metabolites, including 496 previously identified gene-metabolite pairs with strong functional connections and suggested 33.3% of such gene-metabolite pairs shared the same causal variants with genetic associations of gene expression. Integrating transcriptomics and metabolomics individually with FinnGen GWAS results identified 1,597 genes for 790 disease traits. Integrating transcriptomics and metabolomics jointly with FinnGen GWAS results helped pinpoint metabolic pathways from genes to diseases. We identified putative causal effects of UGT1A1/UGT1A4 expression on gallbladder disorders through regulating plasma (E,E)-bilirubin levels, of SLC22A5 expression on nasal polyps and plasma carnitine levels through distinct pathways, and of LIPC expression on age-related macular degeneration through glycerophospholipid metabolic pathways. Our study highlights the power of integrating multiple sets of molecular traits and GWAS results to deepen understanding of disease pathophysiology.
Assuntos
Estudo de Associação Genômica Ampla , Transcriptoma , Bilirrubina , Carnitina , Glicerofosfolipídeos , Humanos , Masculino , Metabolômica , Locos de Características Quantitativas/genética , Membro 5 da Família 22 de Carreadores de Soluto/genética , Transcriptoma/genéticaRESUMO
Metabolites are small molecules that are useful for estimating disease risk and elucidating disease biology. Nevertheless, their causal effects on human diseases have not been evaluated comprehensively. We performed two-sample Mendelian randomization to systematically infer the causal effects of 1,099 plasma metabolites measured in 6,136 Finnish men from the METSIM study on risk of 2,099 binary disease endpoints measured in 309,154 Finnish individuals from FinnGen. We identified evidence for 282 causal effects of 70 metabolites on 183 disease endpoints (FDR<1%). We found 25 metabolites with potential causal effects across multiple disease domains, including ascorbic acid 2-sulfate affecting 26 disease endpoints in 12 disease domains. Our study suggests that N-acetyl-2-aminooctanoate and glycocholenate sulfate affect risk of atrial fibrillation through two distinct metabolic pathways and that N-methylpipecolate may mediate the causal effect of N6, N6-dimethyllysine on anxious personality disorder. This study highlights the broad causal impact of plasma metabolites and widespread metabolic connections across diseases.
RESUMO
Few studies have explored the impact of rare variants (minor allele frequency < 1%) on highly heritable plasma metabolites identified in metabolomic screens. The Finnish population provides an ideal opportunity for such explorations, given the multiple bottlenecks and expansions that have shaped its history, and the enrichment for many otherwise rare alleles that has resulted. Here, we report genetic associations for 1391 plasma metabolites in 6136 men from the late-settlement region of Finland. We identify 303 novel association signals, more than one third at variants rare or enriched in Finns. Many of these signals identify genes not previously implicated in metabolite genome-wide association studies and suggest mechanisms for diseases and disease-related traits.
Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Alelos , Finlândia , Frequência do Gene , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino , FenótipoRESUMO
With only 536 cases and 11 fatalities, India took the historic decision of a 21-day national lockdown on March 25. The lockdown was first extended to May 3 soon after the analysis of this paper was completed, and then to May 18 while this paper was being revised. In this paper, we use a Bayesian extension of the Susceptible-Infected-Removed (eSIR) model designed for intervention forecasting to study the short- and long-term impact of an initial 21-day lockdown on the total number of COVID-19 infections in India compared to other less severe non-pharmaceutical interventions. We compare effects of hypothetical durations of lockdown on reducing the number of active and new infections. We find that the lockdown, if implemented correctly, can reduce the total number of cases in the short term, and buy India invaluable time to prepare its healthcare and disease-monitoring system. Our analysis shows we need to have some measures of suppression in place after the lockdown for increased benefit (as measured by reduction in the number of cases). A longer lockdown between 42-56 days is preferable to substantially "flatten the curve" when compared to 21-28 days of lockdown. Our models focus solely on projecting the number of COVID-19 infections and, thus, inform policymakers about one aspect of this multi-faceted decision-making problem. We conclude with a discussion on the pivotal role of increased testing, reliable and transparent data, proper uncertainty quantification, accurate interpretation of forecasting models, reproducible data science methods and tools that can enable data-driven policymaking during a pandemic. Our software products are available at covind19.org.