Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 27(8): 2977-87, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23592762

RESUMO

Bone-marrow mesenchymal stem cells (MSCs) are the origin of bone-forming cells with immunomodulation potential. HLA-G5 is among the generated immunosuppressive molecules. HLA-G proteins play a crucial role in promoting the acceptance of allografts. However, the mechanisms regulating the expression of HLA-G5 in human MSCs are unknown. We induced differentiation of MSCs and found that HLA-G5 was greatly up-regulated only in osteoblastic cells (+63% for mRNA). Growth plates and bone callus postfracture in adults showed that only bone-lining cells and mesenchymal progenitors were positive for HLA-G5. Use of gene silencing and dominant-negative factors revealed that HLA-G5 depends on the expression and function of the skeletogenesis master genes RUNX2 and DLX5. In addition, HLA-G5 could directly inhibit osteoclastogenesis by acting on monocytes through SHP1. However, in mature osteoblasts, the expression of HLA-G5 protein was greatly suppressed whereas the proosteoclastogenic factor, RANKL, was concomitantly increased. Down-regulation of HLA-G5 expression during the maturation of osteoblasts was due to binding of the repressor GLI3, a signal transducer of the Hedgehog pathway, to the GLI binding element within the HLA-G promoter. Our findings show that mesenchymal progenitors and osteoblastic cells specifically express HLA-G5 during osteogenesis, with a key role in bone homeostasis.


Assuntos
Osso e Ossos/metabolismo , Antígenos HLA-G/genética , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/metabolismo , Osteogênese/genética , Adulto , Osso e Ossos/citologia , Linhagem Celular Tumoral , Linhagem da Célula/genética , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Regulação da Expressão Gênica , Antígenos HLA-G/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Homeostase/genética , Humanos , Imuno-Histoquímica , Microscopia de Fluorescência , Modelos Genéticos , Osteoblastos/citologia , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
PLoS One ; 7(11): e48648, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23144918

RESUMO

Mesenchymal stem cells (MSCs) and pericyte progenitors (PPs) are both perivascular cells with similar multipotential properties regardless of tissue of origin. We compared the phenotype and function of the 2 cell types derived from the same bone-marrow samples but expanded in their respective media - pericyte conditions (endothelial cell growth medium 2 [EGM-2]) for PPs and standard medium (mesenchymal stem cell medium [MSM]) for MSCs. After 3 weeks of culture, whatever the expansion medium, all cells showed similar characteristics (MSC markers and adipo-osteo-chondroblastic differentiation potential), although neuronal potential was greater in EGM-2- than MSM-cultured cells. As compared with MSM-cultured MSCs, EGM-2-cultured PPs showed higher expression of the pericyte-specific antigen 3G5 than α-smooth muscle actin. In addition, EGM-2-cultured PPs showed an immature phenotype, with upregulation of stemness OCT4 and SOX2 proteins and downregulation of markers of osteoblastic, chondroblastic, adipocytic and vascular smooth muscle lineages. Despite having less effective in vitro immunosuppression capacities than standard MSCs, EGM-2-cultured PPs had higher engraftment potentials when combined with biomaterials heterotopically-transplanted in Nude mice. Furthermore, these engrafted cells generated more collagen matrix and were preferentially perivascular or lined trabeculae as compared with MSM-cultured MSCs. In conclusion, EGM-2-cultured PPs are highly immature cells with increased plasticity and engraftment potential.


Assuntos
Diferenciação Celular , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Pericitos/citologia , Pericitos/transplante , Animais , Biomarcadores , Linhagem da Célula , Células Cultivadas , Meios de Cultura , Humanos , Camundongos , Camundongos Nus , Neurônios/citologia , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA