RESUMO
The hollow fiber membrane bioreactor (HFMB) has been investigated for the cultivation of mammalian Chinese hamster ovary cell expansion. The experiments were carried out in Petri's dishes and in the hollow fiber membrane bioreactor having 20 fibers (S2025 from FiberCell Systems). The approach to HFMB modelling which combines the model of cell growth kinetics and hydrodynamics has been proposed. The hydrodynamic model is made using ANSYS Fluent software. The mathematical model of HFMB was developed, allowing the study of the hydrodynamics into the lumen and the extracapillary spaces, the filtration through the membrane fiber with the cell expansion on outer membrane surface. The direct nutrient medium flow variant into the extracapillary space was suggested. Based on the numerical simulations, the optimal parameters were selected for daily changes in the medium flow-rate into the lumen space. The HFMB scaling up was performed for the larger size HFMB (60 fibers).
Assuntos
Reatores Biológicos , Técnicas de Cultura de Células , Membranas Artificiais , Modelos Teóricos , Animais , Células CHO , Cricetinae , CricetulusRESUMO
The feasibility of baker's yeast production using fruits and peels of Opuntia ficus indica (OFI) as carbohydrate feedstock was investigated. Two response surface methodologies involving central composite face centered design (CCFD) were successfully applied. The effects of four independent variables on baker's yeast production from OFI fruit juice was evaluated using the first CCFD. The best results were obtained with 24 H of inoculum age, 30 °C temperature, 200 rpm of agitation, and 10% inoculum size. At the maximum point, the biomass concentration reached 9.29 g/L. A second CCFD was performed to optimize the sugar extraction from OFI fruit peels. The potential of these latter as a fermentation substrate was determined. From the experimental results, the OFI fruit peel is an appropriate carbon source for the production of baker's yeast. The maximum biomass concentration was 12.51 g/L. Different nitrogen supplements were added to promote the yields of baker's yeast. Corn steep liquor was found to be the best alternative nutrient source of casein hydrolysate and yeast extract for baker's yeast production.
Assuntos
Opuntia/metabolismo , Saccharomyces cerevisiae/metabolismo , Resíduos/análise , Biomassa , Sucos de Frutas e Vegetais/análise , Opuntia/químicaRESUMO
The fermentative properties of thermo-sensitive strain Corynebacterium glutamicum 2262 were investigated in processes coupling aerobic cell growth and the anaerobic fermentation phase. In particular, the influence of two modes of fermentation on the production of lactate, the fermentation product model, was studied. In both processes, lactate was produced in significant amount, 27 g/L in batch culture, and up to 55.8 g/L in fed-batch culture, but the specific production rate in the fed-batch culture was four times lower than that in the batch culture. Compared to other investigated fermentation processes, our strategy resulted in the highest yield of lactic acid from biomass. Lactate production by C. glutamicum 2262 thus revealed the capability of the strain to produce various fermentation products from pyruvate.
Assuntos
Corynebacterium glutamicum/metabolismo , Fermentação , Ácido Láctico/biossíntese , Aerobiose , Anaerobiose , Técnicas de Cultura Celular por Lotes , Proliferação de Células , Corynebacterium glutamicum/citologia , Oxigênio/metabolismo , Temperatura , Fatores de TempoRESUMO
This study describes the biodegradation of phenanthrene in aqueous media in the presence and in the absence of a surfactant, Brij 30. Biodegradations were performed using either Pseudomonas putida DSMZ 8368 or a bacterial consortium Pyr01 isolated from one PAHs-polluted site. P. putida degraded phenanthrene to form 1-hydroxy-2-naphthoic acid (1H2Na) as the major metabolite. LC-MS analysis revealed the production of complementary intermediates in the presence of Brij 30, showing intense ions at mass-to-charge ratios (m/z) 97 and 195. Higher phenanthrene biodegradation rate was obtained in the presence of Brij 30. Conversely, in the case of Pyr01consortium, the addition of Brij 30 (0.5 g L(-1)) had a negative effect on biodegradation: no phenanthrene biodegradation products were detected in the medium, whereas a production of several intermediates (m/z 97, 195 and 293) was obtained without surfactant. New results on phenanthrene metabolism by P. putida DSMZ 8368 and Pyr01 consortium in the presence and in the absence of Brij 30 we obtained. They confirm that the knowledge of the effect of a surfactant on bacterial cultures is crucial for the optimization of surfactant-enhanced PAHs biodegradation.
RESUMO
Opuntia ficus indica (OFI) waste was evaluated as a fermentation feedstock for lactic acid production using Lactobacillus plantarum. Dilute acid pretreatment of the OFI cladodes (OFIC) was performed for extracting maximum fermentable sugars by optimizing process parameters using statistical optimization method. The best results were obtained with HCl 1% (v/v), temperature 120 °C, residence time 40 min, granulation 350 µm and substrate loading 5% (w/v), the sugar concentration reached 24 g/L with low concentration of hydroxymethylfurfural. The feasibility of producing lactic acid from OFI fruit peel (OFIFP) as a source of carbon was also investigated. Lactobacillus plantarum was shown to have a capacity for lactic acid production from OFIC350 (granulation 350 µm) hydrolysate and OFIFP extract without detoxification. The highest lactic acid yields of 0.46 and 0.78 g/g were obtained from enzymatic hydrolysate of pretreated OFIC350 and OFIFP extract, respectively.
Assuntos
Lactobacillus plantarum , Opuntia , Carbono , Análise Custo-Benefício , Fermentação , Ácido LácticoRESUMO
In Corynebacterium glutamicum, the activity of the 2-oxoglutarate dehydrogenase complex was shown to be controlled by the phosphorylation of a 15-kDa protein OdhI by different serine/threonine protein kinases. In this paper, the phosphorylation status and kinetics of OdhI dephosphorylation were assessed during glutamate producing processes triggered by either a biotin limitation or a temperature upshock from 33 degrees C to 39 degrees C. A dephosphorylation of OdhI in C. glutamicum 2262 was observed during the biotin-limited as well as the temperature-induced glutamate-producing process. Deletion of pknG in C. glutamicum 2262 did not affect the phosphorylation status of OdhI during growth and glutamate production phases triggered by a temperature upshock, though a 40% increase in the specific glutamate production rate was measured. These results suggest that, under the conditions analyzed, PknG is not the kinase responsible for the phosphorylation of OdhI in C. glutamicum 2262. The phosphorylation status of OdhI alone is, as expected, not the only parameter that determines the performance of a specific strain, as no clear relation between the specific glutamate production rate and OdhI phosphorylation level was demonstrated.
Assuntos
Corynebacterium glutamicum/metabolismo , Ácido Glutâmico/metabolismo , Complexo Cetoglutarato Desidrogenase/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Deleção de Genes , Cinética , Mutagênese Insercional , Fosfoproteínas Fosfatases/genética , FosforilaçãoRESUMO
Dehydration of microorganisms, rendering them anhydrobiotic, is often an efficient method for the short and long term conservation of different strain-producers. However, some biotechnologically important recombinant bacterial strains are extremely sensitive to conventional treatment. We describe appropriate conditions during dehydration of the recombinant Escherichia coli strain HB 101 (GAPDH) that can result dry cells having a approximately 88% viability on rehydration. The methods entails air-drying after addition of 100 mM trehalose to the cultivation medium or distilled water (for short term incubation).
Assuntos
Escherichia coli/fisiologia , Preservação Biológica , Trealose , Dessecação , Viabilidade Microbiana , Recombinação GenéticaRESUMO
The use of date juice as a substrate for lactic acid production was investigated. Various nitrogen sources were compared with yeast extract for efficient lactic acid production by Lactobacillus casei subsp. rhamnosus. Among different nitrogen sources added to date juice (yeast extract, ammonium sulfate, tryptic soy, urea, peptone, and casein hydrolysate), yeast extract was the most efficient. The effect of yeast extract could have been due to its B vitamin content. The addition of five B vitamins at less than 25 mg/l to date juice with any nitrogen source enhanced lactic acid production to some extent, except for date juice with yeast extract or urea or peptone. The most significant increase was obtained with ammonium sulfate. Half of the yeast extract content (10 g/l) in a supplemented date juice could be replaced by a mixture of B vitamins at less than 25 mg/l, and ammonium sulfate at 2.6 g/l with no significant decrease in lactic acid production.
Assuntos
Frutas/química , Ácido Láctico/biossíntese , Lacticaseibacillus casei/metabolismo , Nitrogênio/farmacologia , Complexo Vitamínico B/farmacologia , Sulfato de Amônio/farmacologia , Relação Dose-Resposta a Droga , Fermentação , Lacticaseibacillus casei/efeitos dos fármacos , Fatores de Tempo , LevedurasRESUMO
The production of lactic acid from date juice by Lactobacillus caseisubsp. rhamnosus in batch and fed-batch cultures has been investigated. The fed-batch culture system gave better results for lactic acid production and volumetric productivity. The aim of this work is to determine the effects of the feeding rate and the concentration of the feeding medium containing date juice glucose on the cell growth, the consumption of glucose and the lactic acid production by Lactobacillus casei subsp. rhamnosus in fed-batch cultures. For this study, two concentrations of the feeding medium (62 and 100 g/L of date juice glucose) were tested at different feeding rates (18, 22, 33, 75 and 150 mL/h). The highest volumetric productivity (1.3 g/L.h) and lactic acid yield (1.7 g/g) were obtained at a feeding rate of 33 mL/h and a date juice glucose concentration of 62 g/L in the feeding medium. As a result, most of the date juice glucose was completely utilised (residual glucose 1 g/L), and a maximum lactic acid production level (89.2 g/L) was obtained.
Assuntos
Técnicas de Cultura Celular por Lotes , Ácido Láctico/metabolismo , Lacticaseibacillus casei/metabolismo , Lacticaseibacillus rhamnosus/metabolismo , Phoeniceae/metabolismo , Fermentação , Extratos Vegetais/metabolismoRESUMO
The production of lactic acid from date juice by
Assuntos
Técnicas de Cultura Celular por Lotes , Ácido Láctico/metabolismo , Lacticaseibacillus casei/metabolismo , Lacticaseibacillus rhamnosus/metabolismo , Phoeniceae/metabolismo , Fermentação , Extratos Vegetais/metabolismoRESUMO
The production of lactic acid from date juice by
Assuntos
Técnicas de Cultura Celular por Lotes , Ácido Láctico/metabolismo , Lacticaseibacillus casei/metabolismo , Lacticaseibacillus rhamnosus/metabolismo , Phoeniceae/metabolismo , Fermentação , /metabolismoRESUMO
The galactose-beta1,3-glucuronosyltransferase I (GlcAT-I) catalyzes the transfer of glucuronic acid from UDP-alpha-D-glucuronic acid onto the terminal galactose of the trisaccharide glycosaminoglycan-protein linker region of proteoglycans. This enzyme plays a key role in the process of proteoglycan assembly since the completion of the linkage region is essential for the conversion of a core protein into a functional proteoglycan. To investigate the enzymatic properties of human GlcAT-I, we established an expression system for producing a soluble form of enzyme in the methylotrophic yeast Pichia pastoris and developed a three-step purification procedure using a combination of anion exchange, cation exchange and heparin chromatographies. This procedure yielded 1.6 mg homogeneous enzyme from 200 ml yeast cell culture, with a specific activity value of 1.5 micromol/min/mg protein. Analysis of the specificity of GlcAT-I towards Galbeta1-3Gal and Galbeta1-4GlcNAc derivatives known as substrates of the beta1,3-glucuronosyltransferases, showed that the enzyme exhibited a strict selectivity towards Galbeta1-3Gal structures. Thus, the large source of purified active enzyme allowed the determination of the kinetic parameters of GlcAT-I towards the donor substrate UDP-GlcA and the acceptor substrate digalactoside Galbeta1-3Gal.