Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 56(33): 9710-9714, 2017 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-28628716

RESUMO

Sensors based on responsive photonic hydrogels have recently attracted considerable attention for visual medical diagnostics, pharmaceutical bioassays, and environmental monitoring. However, the use of these promising materials for the detection of nanoparticles (NPs) has never been explored so far, although the sensing of nanoobjects is a rapidly evolving area of research. To address this issue, we have combined the concepts of inverse-opal hydrogels and nanoparticle-imprinted polymers. In this way, we could obtain a NP-imprinted photonic hydrogel consisting of a three-dimensional, highly ordered poly(methacrylic acid) macroporous array, in which nanocavities complementary to the target NPs, in this case colloidal quantum dots, are distributed. This novel type of NP-imprinted photonic hydrogel sensor was shown to display high sensitivity and selectivity, thus opening new prospects for the development of equipment-free and cost-efficient sensing devices for NPs.

2.
Opt Express ; 24(7): 7019-27, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-27136995

RESUMO

We study the intensity spatial correlation function of optical speckle patterns above a disordered dielectric medium in the multiple scattering regime. The intensity distributions are recorded by scanning near-field optical microscopy (SNOM) with sub-wavelength spatial resolution at variable distances from the surface in a range which spans continuously from the near-field (distance ≪ λ) to the far-field regime (distance ≫ λ). The non-universal behavior at sub-wavelength distances reveals the connection between the near-field speckle pattern and the internal structure of the medium.

3.
J Am Chem Soc ; 136(13): 4833-6, 2014 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-24628490

RESUMO

Herein, we describe a new localized functionalization method of graphene oxide (GO) deposited on a silicon oxide surface. The functionalization starts with the reduction of GO by electrogenerated naphthalene radical anions. The source of reducers is a microelectrode moving close to the substrate in a typical scanning electrochemical microscopy (SECM) configuration. Then, the recovery of electronic conductivity upon reduction enables the selective electrochemical functionalization of the patterns. The illustrative example is the electrografting of reduced-GO with a diazonium salt bearing a protonated amino group that can further immobilize gold nanoparticles by simple immersion. This study opens new routes for the construction of multifunctional patterned surfaces.

4.
Anal Chem ; 85(3): 1812-8, 2013 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-23259661

RESUMO

The present article introduces a rapid, very sensitive, contactless method to measure the local surface conductivity with Scanning Electrochemical Microscopy (SECM) and obtain conductivity maps of heterogeneous substrates. It is demonstrated through the study of Graphene Oxide (GO) thin films deposited on glass. The adopted substrate preparation method leads to conductivity disparities randomly distributed over approximately 100 µm large zones. Data interpretation is based on an equation system with the dimensionless conductivity as the only unknown parameter. A detailed prospection provides a consistent theoretical framework for the reliable quantification of the conductivity of GO with SECM. Finally, an analytical approximation of the conductivity as a function of the feedback current is proposed, making any further interpretation procedure straightforward, as it does not require iterative numerical simulations any more. The present work thus provides not only valuable information on the kinetics of GO reduction in mild conditions but also a general and simplified interpretation framework that can be extended to the quantitative conductivity mapping of other types of substrates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA