RESUMO
Cytoplasmic FUS aggregates are a pathological hallmark in a subset of patients with frontotemporal dementia (FTD) or amyotrophic lateral sclerosis (ALS). A key step that is disrupted in these patients is nuclear import of FUS mediated by the import receptor Transportin/Karyopherin-ß2. In ALS-FUS patients, this is caused by mutations in the nuclear localization signal (NLS) of FUS that weaken Transportin binding. In FTD-FUS patients, Transportin is aggregated, and post-translational arginine methylation, which regulates the FUS-Transportin interaction, is lost. Here, we show that Transportin and arginine methylation have a crucial function beyond nuclear import-namely to suppress RGG/RG-driven phase separation and stress granule association of FUS. ALS-associated FUS-NLS mutations weaken the chaperone activity of Transportin and loss of FUS arginine methylation, as seen in FTD-FUS, promote phase separation, and stress granule partitioning of FUS. Our findings reveal two regulatory mechanisms of liquid-phase homeostasis that are disrupted in FUS-associated neurodegeneration.
Assuntos
Arginina/química , Proteína FUS de Ligação a RNA/química , beta Carioferinas/química , Transporte Ativo do Núcleo Celular , Motivos de Aminoácidos , Citoplasma/metabolismo , Metilação de DNA , DNA Complementar/metabolismo , Densitometria , Degeneração Lobar Frontotemporal/metabolismo , Células HeLa , Homeostase , Humanos , Carioferinas/química , Espectroscopia de Ressonância Magnética , Metilação , Chaperonas Moleculares/química , Mutação , Doenças Neurodegenerativas/metabolismo , Ligação Proteica , Domínios ProteicosRESUMO
The accumulation of irreparable cellular damage restricts healthspan after acute stress or natural aging. Senescent cells are thought to impair tissue function, and their genetic clearance can delay features of aging. Identifying how senescent cells avoid apoptosis allows for the prospective design of anti-senescence compounds to address whether homeostasis can also be restored. Here, we identify FOXO4 as a pivot in senescent cell viability. We designed a FOXO4 peptide that perturbs the FOXO4 interaction with p53. In senescent cells, this selectively causes p53 nuclear exclusion and cell-intrinsic apoptosis. Under conditions where it was well tolerated in vivo, this FOXO4 peptide neutralized doxorubicin-induced chemotoxicity. Moreover, it restored fitness, fur density, and renal function in both fast aging XpdTTD/TTD and naturally aged mice. Thus, therapeutic targeting of senescent cells is feasible under conditions where loss of health has already occurred, and in doing so tissue homeostasis can effectively be restored.
Assuntos
Envelhecimento/patologia , Antibióticos Antineoplásicos/efeitos adversos , Peptídeos Penetradores de Células/farmacologia , Doxorrubicina/efeitos adversos , Envelhecimento/efeitos dos fármacos , Animais , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/farmacologia , Apoptose , Proteínas de Ciclo Celular , Linhagem Celular , Sobrevivência Celular , Senescência Celular/efeitos dos fármacos , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacologia , Feminino , Fibroblastos/citologia , Fatores de Transcrição Forkhead/química , Fatores de Transcrição Forkhead/metabolismo , Humanos , Corpos de Inclusão/efeitos dos fármacos , Corpos de Inclusão/metabolismo , Corpos de Inclusão/patologia , Rim/efeitos dos fármacos , Rim/fisiologia , Fígado/efeitos dos fármacos , Fígado/fisiologia , Masculino , Camundongos , Síndromes de Tricotiodistrofia/tratamento farmacológico , Proteína Supressora de Tumor p53/metabolismoRESUMO
Metabolic enzymes can adapt during energy stress, but the consequences of these adaptations remain understudied. Here, we discovered that hexokinase 1 (HK1), a key glycolytic enzyme, forms rings around mitochondria during energy stress. These HK1-rings constrict mitochondria at contact sites with the endoplasmic reticulum (ER) and mitochondrial dynamics protein (MiD51). HK1-rings prevent mitochondrial fission by displacing the dynamin-related protein 1 (Drp1) from mitochondrial fission factor (Mff) and mitochondrial fission 1 protein (Fis1). The disassembly of HK1-rings during energy restoration correlated with mitochondrial fission. Mechanistically, we identified that the lack of ATP and glucose-6-phosphate (G6P) promotes the formation of HK1-rings. Mutations that affect the formation of HK1-rings showed that HK1-rings rewire cellular metabolism toward increased TCA cycle activity. Our findings highlight that HK1 is an energy stress sensor that regulates the shape, connectivity, and metabolic activity of mitochondria. Thus, the formation of HK1-rings may affect mitochondrial function in energy-stress-related pathologies.
Assuntos
Dinaminas , Metabolismo Energético , Hexoquinase , Mitocôndrias , Dinâmica Mitocondrial , Proteínas Mitocondriais , Hexoquinase/metabolismo , Hexoquinase/genética , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/genética , Mitocôndrias/enzimologia , Dinaminas/metabolismo , Dinaminas/genética , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Animais , Trifosfato de Adenosina/metabolismo , Estresse Fisiológico , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Ciclo do Ácido Cítrico , Glucose-6-Fosfato/metabolismo , Camundongos , Células HeLa , Células HEK293 , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/genética , MutaçãoRESUMO
Biomolecular condensates have emerged as a major organizational principle in the cell. However, the formation, maintenance, and dissolution of condensates are still poorly understood. Transcriptional machinery partitions into biomolecular condensates at key cell identity genes to activate these. Here, we report a specific perturbation of WNT-activated ß-catenin condensates that disrupts oncogenic signaling. We use a live-cell condensate imaging method in human cancer cells to discover FOXO and TCF-derived peptides that specifically inhibit ß-catenin condensate formation on DNA, perturb nuclear ß-catenin condensates in cells, and inhibit ß-catenin-driven transcriptional activation and colorectal cancer cell growth. We show that these peptides compete with homotypic intermolecular interactions that normally drive condensate formation. Using this framework, we derive short peptides that specifically perturb condensates and transcriptional activation of YAP and TAZ in the Hippo pathway. We propose a "monomer saturation" model in which short interacting peptides can be used to specifically inhibit condensate-associated transcription in disease.
Assuntos
Neoplasias , beta Catenina , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Transdução de Sinais , Via de Sinalização Hippo , Peptídeos/genéticaRESUMO
The specific interaction of importins with nuclear localization signals (NLSs) of cargo proteins not only mediates nuclear import but also, prevents their aberrant phase separation and stress granule recruitment in the cytoplasm. The importin Transportin-1 (TNPO1) plays a key role in the (patho-)physiology of both processes. Here, we report that both TNPO1 and Transportin-3 (TNPO3) recognize two nonclassical NLSs within the cold-inducible RNA-binding protein (CIRBP). Our biophysical investigations show that TNPO1 recognizes an arginine-glycine(-glycine) (RG/RGG)-rich region, whereas TNPO3 recognizes a region rich in arginine-serine-tyrosine (RSY) residues. These interactions regulate nuclear localization, phase separation, and stress granule recruitment of CIRBP in cells. The presence of both RG/RGG and RSY regions in numerous other RNA-binding proteins suggests that the interaction of TNPO1 and TNPO3 with these nonclassical NLSs may regulate the formation of membraneless organelles and subcellular localization of numerous proteins.
Assuntos
Núcleo Celular/metabolismo , Sinais de Localização Nuclear , Fragmentos de Peptídeos/metabolismo , Proteínas de Ligação a RNA/metabolismo , beta Carioferinas/metabolismo , Transporte Ativo do Núcleo Celular , Arginina/química , Arginina/metabolismo , Citoplasma/metabolismo , Glicina/química , Glicina/metabolismo , Células HeLa , Humanos , Fragmentos de Peptídeos/química , Ligação Proteica , Conformação Proteica , Proteínas de Ligação a RNA/química , Serina/química , Serina/metabolismo , Tirosina/química , Tirosina/metabolismo , beta Carioferinas/químicaRESUMO
Molecular diagnostics in healthcare relies increasingly on genomic and transcriptomic methodologies and requires appropriate tissue specimens from which nucleic acids (NA) of sufficiently high quality can be obtained. Besides the duration of ischemia and fixation type, NA quality depends on a variety of other pre-analytical parameters, such as storage conditions and duration. It has been discussed that the improper dehydration of tissue during processing influences the quality of NAs and the shelf life of fixed tissue. Here, we report on establishing a method for determining the amount of residual water in fixed, paraffin-embedded tissue (fixed by neutral buffered formalin or a non-crosslinking fixative) and its correlation to the performance of NAs in quantitative real-time polymerase chain reaction (qRT-PCR) analyses. The amount of residual water depended primarily on the fixative type and the dehydration protocol and, to a lesser extent, on storage conditions and time. Moreover, we found that these parameters were associated with the qRT-PCR performance of extracted NAs. Besides the cross-linking of NAs and the modification of nucleobases by formalin, the hydrolysis of NAs by residual water was found to contribute to reduced qRT-PCR performance. The negative effects of residual water on NA stability are not only important for the design and interpretation of research but must also be taken into account in clinical diagnostics where the reanalysis of archived tissue from a primary tumor may be required (e.g., after disease recurrence). We conclude that improving the shelf life of fixed tissue requires meticulous dehydration and dry storage to minimize the degradative influence of residual water on NAs.
Assuntos
Desidratação , Ácidos Nucleicos , Humanos , Fixadores , Fixação de Tecidos/métodos , Inclusão em Parafina/métodos , Umidade , Ácidos Nucleicos/genética , FormaldeídoRESUMO
RNA aptamers-artificially created RNAs with high affinity and selectivity for their target ligand generated from random sequence pools-are versatile tools in the fields of biotechnology and medicine. On a more fundamental level, they also further our general understanding of RNA-ligand interactions e. g. in regard to the relationship between structural complexity and ligand affinity and specificity, RNA structure and RNA folding. Detailed structural knowledge on a wide range of aptamer-ligand complexes is required to further our understanding of RNA-ligand interactions. Here, we present the atomic resolution structure of an RNA-aptamer binding to the fluorescent xanthene dye tetramethylrhodamine. The high resolution structure, solved by NMR-spectroscopy in solution, reveals binding features both common and different from the binding mode of other aptamers with affinity for ligands carrying planar aromatic ring systems such as the malachite green aptamer which binds to the tetramethylrhodamine related dye malachite green or the flavin mononucleotide aptamer.
Assuntos
Aptâmeros de Nucleotídeos/química , Conformação de Ácido Nucleico , RNA/química , Rodaminas/química , Ligantes , Espectroscopia de Ressonância Magnética , Dobramento de RNARESUMO
Dipeptidyl peptidase 3 (DPP3) is a zinc-dependent hydrolase involved in degrading oligopeptides with 4-12 amino acid residues. It has been associated with several pathophysiological processes, including blood pressure regulation, pain signaling, and cancer cell defense against oxidative stress. However, the physiological substrates and the cellular pathways that are potentially targeted by DPP3 to mediate these effects remain unknown. Here, we show that global DPP3 deficiency in mice (DPP3-/-) affects the renin-angiotensin system (RAS). LC-MS-based profiling of circulating angiotensin peptides revealed elevated levels of angiotensin II, III, IV, and 1-5 in DPP3-/- mice, whereas blood pressure, renin activity, and aldosterone levels remained unchanged. Activity assays using the purified enzyme confirmed that angiotensin peptides are substrates for DPP3. Aberrant angiotensin signaling was associated with substantially higher water intake and increased renal reactive oxygen species formation in the kidneys of DPP3-/- mice. The metabolic changes and altered angiotensin levels observed in male DPP3-/- mice were either absent or attenuated in female DPP3-/- mice, indicating sex-specific differences. Taken together, our observations suggest that DPP3 regulates the RAS pathway and water homeostasis by degrading circulating angiotensin peptides.
Assuntos
Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Rim/enzimologia , Sistema Renina-Angiotensina , Caracteres Sexuais , Transdução de Sinais , Equilíbrio Hidroeletrolítico , Angiotensinas/genética , Angiotensinas/metabolismo , Animais , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Feminino , Masculino , Camundongos , Camundongos Knockout , Espécies Reativas de Oxigênio/metabolismoRESUMO
The most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is the presence of poly-PR/GR dipeptide repeats, which are encoded by the chromosome 9 open reading frame 72 (C9orf72) gene. Recently, it was shown that poly-PR/GR alters chromatin accessibility, which results in the stabilization and enhancement of transcriptional activity of the tumor suppressor p53 in several neurodegenerative disease models. A reduction in p53 protein levels protects against poly-PR and partially against poly-GR neurotoxicity in cells. Moreover, in model organisms, a reduction of p53 protein levels protects against neurotoxicity of poly-PR. Here, we aimed to study the detailed molecular mechanisms of how p53 contributes to poly-PR/GR-mediated neurodegeneration. Using a combination of biophysical techniques such as nuclear magnetic resonance (NMR) spectroscopy, fluorescence polarization, turbidity assays, and differential interference contrast (DIC) microscopy, we found that p53 physically interacts with poly-PR/GR and triggers liquid-liquid phase separation of p53. We identified the p53 transactivation domain 2 (TAD2) as the main binding site for PR25/GR25 and showed that binding of poly-PR/GR to p53 is mediated by a network of electrostatic and/or hydrophobic interactions. Our findings might help to understand the mechanistic role of p53 in poly-PR/GR-associated neurodegeneration.
Assuntos
Esclerose Lateral Amiotrófica/patologia , Proteína C9orf72/metabolismo , Dipeptídeos/metabolismo , Demência Frontotemporal/patologia , Proteína Supressora de Tumor p53/metabolismo , Esclerose Lateral Amiotrófica/genética , Sítios de Ligação , Proteína C9orf72/genética , Polarização de Fluorescência , Demência Frontotemporal/genética , Humanos , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Ressonância Magnética Nuclear Biomolecular , Domínios e Motivos de Interação entre Proteínas/fisiologia , Ativação Transcricional/genética , Proteína Supressora de Tumor p53/genéticaRESUMO
Deposition of the nuclear DNA/RNA-binding protein Fused in sarcoma (FUS) in cytosolic inclusions is a common hallmark of some cases of frontotemporal lobar degeneration (FTLD-FUS) and amyotrophic lateral sclerosis (ALS-FUS). Whether both diseases also share common pathological mechanisms is currently unclear. Based on our previous finding that FUS deposits are hypomethylated in FTLD-FUS but not in ALS-FUS, we have now investigated whether genetic or pharmacological inactivation of Protein arginine methyltransferase 1 (PRMT1) activity results in unmethylated FUS or in alternatively methylated forms of FUS. To do so, we generated FUS-specific monoclonal antibodies that specifically recognize unmethylated arginine (UMA), monomethylated arginine (MMA) or asymmetrically dimethylated arginine (ADMA). Loss of PRMT1 indeed not only results in an increase of UMA FUS and a decrease of ADMA FUS, but also in a significant increase of MMA FUS. Compared to ADMA FUS, UMA and MMA FUS exhibit much higher binding affinities to Transportin-1, the nuclear import receptor of FUS, as measured by pull-down assays and isothermal titration calorimetry. Moreover, we show that MMA FUS occurs exclusively in FTLD-FUS, but not in ALS-FUS. Our findings therefore provide additional evidence that FTLD-FUS and ALS-FUS are caused by distinct disease mechanisms although both share FUS deposits as a common denominator.
Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Degeneração Lobar Frontotemporal/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , beta Carioferinas/metabolismo , Esclerose Lateral Amiotrófica/genética , Animais , Anticorpos/farmacologia , Arginina/metabolismo , Células Cultivadas , Córtex Cerebral/citologia , Embrião de Mamíferos , Células-Tronco Embrionárias , Inibidores Enzimáticos/farmacologia , Feminino , Degeneração Lobar Frontotemporal/genética , Humanos , Corpos de Inclusão/efeitos dos fármacos , Corpos de Inclusão/metabolismo , Masculino , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Proteína-Arginina N-Metiltransferases/genética , Proteína FUS de Ligação a RNA/imunologia , Ratos , beta Carioferinas/imunologiaRESUMO
Arginine methylation (ArgMet), as a post-translational modification, plays crucial roles in RNA processing, transcriptional regulation, signal transduction, DNA repair, apoptosis and liquid-liquid phase separation (LLPS). Since arginine methylation is associated with cancer pathogenesis and progression, protein arginine methyltransferases have gained interest as targets for anti-cancer therapy. Despite considerable process made to elucidate (patho)physiological mechanisms regulated by arginine methylation, there remains a lack of tools to visualize arginine methylation with high spatiotemporal resolution in live cells. To address this unmet need, we generated an ArgMet-sensitive genetically encoded, Förster resonance energy transfer-(FRET) based biosensor, called GEMS, capable of quantitative real-time monitoring of ArgMet dynamics. We optimized these biosensors by using different ArgMet-binding domains, arginine-glycine-rich regions and adjusting the linkers within the biosensors to improve their performance. Using a set of mammalian cell lines and modulators, we demonstrated the applicability of GEMS for monitoring changes in arginine methylation with single-cell and temporal resolution. The GEMS can facilitate the in vitro screening to find potential protein arginine methyltransferase inhibitors and will contribute to a better understanding of the regulation of ArgMet related to differentiation, development and disease.
Assuntos
Arginina , Transferência Ressonante de Energia de Fluorescência , Animais , Arginina/química , Metilação , Regulação da Expressão Gênica , Corantes , Processamento de Proteína Pós-Traducional , Mamíferos/metabolismoRESUMO
The genome is frequently targeted by genotoxic agents, resulting in the formation of DNA scars. However, cells employ diverse repair mechanisms to restore DNA integrity. Among these processes, the Mre11-Rad50-Nbs1 complex detects double-strand breaks (DSBs) and recruits DNA damage response proteins such as ataxia-telangiectasia-mutated (ATM) kinase to DNA damage sites. ATM phosphorylates the transactivation domain (TAD) of the p53 tumor suppressor, which in turn regulates DNA repair, growth arrest, apoptosis, and senescence following DNA damage. The disordered glycine-arginine-rich (GAR) domain of double-strand break protein MRE11 (MRE11GAR) and its methylation are important for DSB repair, and localization to Promyelocytic leukemia nuclear bodies (PML-NBs). There is preliminary evidence that p53, PML protein, and MRE11 might co-localize and interact at DSB sites. To uncover the molecular details of these interactions, we aimed to identify the domains mediating the p53-MRE11 interaction and to elucidate the regulation of the p53-MRE11 interaction by post-translational modifications (PTMs) through a combination of biophysical techniques. We discovered that, in vitro, p53 binds directly to MRE11GAR mainly through p53TAD2 and that phosphorylation further enhances this interaction. Furthermore, we found that MRE11GAR methylation still allows for binding to p53. Overall, we demonstrated that p53 and MRE11 interaction is facilitated by disordered regions. We provide for the first time insight into the molecular details of the p53-MRE11 complex formation and elucidate potential regulatory mechanisms that will promote our understanding of the DNA damage response. Our findings suggest that PTMs regulate the p53-MRE11 interaction and subsequently their colocalization to PML-NBs upon DNA damage.
Assuntos
Proteínas de Ciclo Celular , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/genética , Proteínas de Ciclo Celular/metabolismo , Proteína Homóloga a MRE11/genética , Proteína Homóloga a MRE11/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNARESUMO
The insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1) is a conserved RNA-binding protein that regulates RNA stability, localization and translation. IGF2BP1 is part of various ribonucleoprotein (RNP) condensates. However, the mechanism that regulates its assembly into condensates remains unknown. By using proteomics, we demonstrate that phosphorylation of IGF2BP1 at S181 in a disordered linker is regulated in a stress-dependent manner. Phosphomimetic mutations in two disordered linkers, S181E and Y396E, modulate RNP condensate formation by IGF2BP1 without impacting its binding affinity for RNA. Intriguingly, the S181E mutant, which lies in linker 1, impairs IGF2BP1 condensate formation in vitro and in cells, whereas a Y396E mutant in the second linker increases condensate size and dynamics. Structural approaches show that the first linker binds RNAs nonspecifically through its RGG/RG motif, an interaction weakened in the S181E mutant. Notably, linker 2 interacts with IGF2BP1's folded domains and these interactions are partially impaired in the Y396E mutant. Importantly, the phosphomimetic mutants impact IGF2BP1's interaction with RNAs and remodel the transcriptome in cells. Our data reveal how phosphorylation modulates low-affinity interaction networks in disordered linkers to regulate RNP condensate formation and RNA metabolism.
Assuntos
Proteínas de Ligação a RNA , RNA , Ribonucleoproteínas , Fosforilação , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/química , Humanos , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/química , RNA/metabolismo , RNA/genética , Mutação , Ligação Proteica , Células HEK293 , Células HeLaRESUMO
Atherosclerosis, the leading cause of cardiovascular disease, cannot be sufficiently explained by established risk factors, including cholesterol. Elevated plasma homocysteine (Hcy) is an independent risk factor for atherosclerosis and is closely linked to cardiovascular mortality. However, its role in atherosclerosis has not been fully clarified yet. We have previously shown that rabbits fed a diet deficient in B vitamins and choline (VCDD), which are required for Hcy degradation, exhibit an accumulation of macrophages and lipids in the aorta, aortic stiffening and disorganization of aortic collagen in the absence of hypercholesterolemia, and an aggravation of atherosclerosis in its presence. In the current study, plasma Hcy levels were increased by intravenous injections of Hcy into balloon-injured rabbits fed VCDD (VCDD+Hcy) in the absence of hypercholesterolemia. While this treatment did not lead to thickening of aortic wall, intravenous injections of Hcy into rabbits fed VCDD led to massive accumulation of VLDL-triglycerides as well as significant impairment of vascular reactivity of the aorta compared to VCDD alone. In the aorta intravenous Hcy injections into VCDD-fed rabbits led to fragmentation of aortic elastin, accumulation of elastin-specific electron-dense inclusions, collagen disorganization, lipid degradation, and autophagolysosome formation. Furthermore, rabbits from the VCDD+Hcy group exhibited a massive decrease of total protein methylated arginine in blood cells and decreased creatine in blood cells, serum and liver compared to rabbits from the VCDD group. Altogether, we conclude that Hcy contributes to atherogenic transformation of the aorta not only in the presence but also in the absence of hypercholesterolemia.
Assuntos
Aorta , Aterosclerose , Homocisteína , Hipercolesterolemia , Animais , Coelhos , Aterosclerose/patologia , Aterosclerose/metabolismo , Homocisteína/sangue , Aorta/patologia , Aorta/metabolismo , Hipercolesterolemia/sangue , Hipercolesterolemia/metabolismo , Hipercolesterolemia/patologia , Masculino , Colina/administração & dosagem , Modelos Animais de Doenças , Elastina/metabolismo , Complexo Vitamínico B/administração & dosagem , Complexo Vitamínico B/farmacologiaRESUMO
Millions of people worldwide are affected by neurodegenerative diseases (NDs), and to date, no effective treatment has been reported. The hallmark of these diseases is the formation of pathological aggregates and fibrils in neural cells. Many studies have reported that catechins, polyphenolic compounds found in a variety of plants, can directly interact with amyloidogenic proteins, prevent the formation of toxic aggregates, and in turn play neuroprotective roles. Besides harboring amyloidogenic domains, several proteins involved in NDs possess arginine-glycine/arginine-glycine-glycine (RG/RGG) regions that contribute to the formation of protein condensates. Here, we aimed to assess whether epigallocatechin gallate (EGCG) can play a role in neuroprotection via direct interaction with such RG/RGG regions. We show that EGCG directly binds to the RG/RGG region of fused in sarcoma (FUS) and that arginine methylation enhances this interaction. Unexpectedly, we found that low micromolar amounts of EGCG were sufficient to restore RNA-dependent condensate formation of methylated FUS, whereas, in the absence of EGCG, no phase separation could be observed. Our data provide new mechanistic roles of EGCG in the regulation of phase separation of RG/RGG-containing proteins, which will promote understanding of the intricate function of EGCG in cells.
Assuntos
Catequina , Doenças Neurodegenerativas , Arginina/metabolismo , Catequina/análogos & derivados , Catequina/farmacologia , Glicina , Humanos , Metilação , Doenças Neurodegenerativas/metabolismo , Proteínas/metabolismo , Proteína FUS de Ligação a RNA/metabolismoRESUMO
L-ornithine L-aspartate (LOLA) is administered as a therapeutic and/or preventive strategy against hepatic encephalopathy either intravenously or orally in patients with liver cirrhosis. Here, we analyzed how LOLA influences the microbiome and metabolome of patients with liver cirrhosis. We retrospectively analyzed the stool microbiome, stool, urine and serum metabolome as well as markers for gut permeability, inflammation and muscle metabolism of 15 cirrhosis patients treated orally with LOLA for at least one month and 15 propensity-score-matched cirrhosis patients without LOLA. Results were validated by comparing the LOLA-treated patients to a second set of controls. Patients with and without LOLA were comparable in age, sex, etiology and severity of cirrhosis as well as PPI and laxative use. In the microbiome, Flavonifractor and Oscillospira were more abundant in patients treated with LOLA compared to the control group, while alpha and beta diversity were comparable between groups. Differences in stool and serum metabolomes reflected the pathophysiology of hepatic encephalopathy and confirmed LOLA intake. In the urine metabolome, ethanol to acetic acid ratio was lower in patients treated with LOLA compared to controls. LOLA-treated patients also showed lower serum levels of insulin-like growth factor (IGF) 1 than patients without LOLA. No differences in gut permeability or inflammation markers were found. A higher abundance of Flavonifractor and Oscillospira in LOLA-treated patients could indicate LOLA as a potential microbiome modulating strategy in patients with liver disease. The lower levels of IGF1 in patients treated with LOLA suggest a possible link between the pathophysiology of hepatic encephalopathy and muscle health.
Assuntos
Dipeptídeos , Microbiota , Humanos , Cirrose Hepática/complicações , Metaboloma , Estudos RetrospectivosRESUMO
Transcription factors play key roles in orchestrating a plethora of cellular mechanisms and controlling cellular homeostasis. Transcription factors share distinct DNA binding domains, which allows to group them into protein families. Among them, the Forkhead box O (FOXO) family contains transcription factors crucial for cellular homeostasis, longevity and response to stress. The dysregulation of FOXO signaling is linked to drug resistance in cancer therapy or cellular senescence, however, selective drugs targeting FOXOs are limited, thus knowledge about structure and dynamics of FOXO proteins is essential. Here, we provide an extensive study of structure and dynamics of all FOXO family members. We identify residues accounting for different dynamic and structural features. Furthermore, we show that the auto-inhibition of FOXO proteins by their C-terminal trans-activation domain is conserved throughout the family and that these interactions are not only possible intra-, but also inter-molecularly. This indicates a model in which FOXO transcription factors would modulate their activities by interacting mutually.
RESUMO
Intrinsically disordered proteins and proteins containing intrinsically disordered regions are highly abundant in the proteome of eukaryotes and are extensively involved in essential biological functions. More recently, their role in the organization of biomolecular condensates has become evident and along with their misregulation in several neurologic disorders. Currently, most studies involving these proteins are carried out in vitro and using purified proteins. Given that in cells, condensate-forming proteins are exposed to high, millimolar concentrations of cellular metabolites, we aimed to reveal the interactions of cellular metabolites and a representative condensate-forming protein. Here, using the arginine-glycine/arginine-glycine-glycine (RG/RGG)-rich cold inducible RNA binding protein (CIRBP) as paradigm, we studied binding of the cellular metabolome to CIRBP. We found that most of the highly abundant cellular metabolites, except nucleotides, do not directly bind to CIRBP. ATP, ADP, and AMP as well as NAD+ , NADH, NADP+ , and NADPH directly interact with CIRBP, involving both the folded RNA-recognition motif and the disordered RG/RGG region. ATP binding inhibited RNA-driven phase separation of CIRBP. Thus, it might be beneficial to include cellular metabolites in in vitro liquid-liquid phase separation studies of RG/RGG and other condensate-forming proteins in order to better mimic the cellular environment in the future.
Assuntos
Trifosfato de Adenosina/química , Proteínas Intrinsicamente Desordenadas/química , Proteínas de Ligação a RNA/química , RNA/química , Motivos de Aminoácidos , HumanosRESUMO
Arginine-glycine(-glycine) (RG/RGG) regions are highly abundant in RNA-binding proteins and involved in numerous physiological processes. Aberrant liquid-liquid phase separation (LLPS) and stress granule (SGs) association of RG/RGG regions in the cytoplasm have been implicated in several neurodegenerative disorders. LLPS and SG association of these proteins is regulated by the interaction with nuclear import receptors, such as transportin-1 (TNPO1), and by post-translational arginine methylation. Strikingly, many RG/RGG proteins harbour potential phosphorylation sites within or close to their arginine methylated regions, indicating a regulatory role. Here, we studied the role of phosphorylation within RG/RGG regions on arginine methylation, TNPO1-binding and LLPS using the cold-inducible RNA-binding protein (CIRBP) as a paradigm. We show that the RG/RGG region of CIRBP is in vitro phosphorylated by serine-arginine protein kinase 1 (SRPK1), and discovered two novel phosphorylation sites in CIRBP. SRPK1-mediated phosphorylation of the CIRBP RG/RGG region impairs LLPS and binding to TNPO1 in vitro and interferes with SG association in cells. Furthermore, we uncovered that arginine methylation of the CIRBP RG/RGG region regulates in vitro phosphorylation by SRPK1. In conclusion, our findings indicate that LLPS and TNPO1-mediated chaperoning of RG/RGG proteins is regulated through an intricate interplay of post-translational modifications.
RESUMO
Sepsis biomarkers and potential therapeutic targets are urgently needed. With proton nuclear magnetic resonance (1H NMR) spectroscopy, several metabolites can be assessed simultaneously. Fifty-three adult medical ICU sepsis patients and 25 ICU controls without sepsis were prospectively enrolled. 1H NMR differences between groups and associations with 28-day and ICU mortality were investigated. In multivariate metabolomic analyses, we found separate clustering of ICU controls and sepsis patients, as well as septic shock survivors and non-survivors. Lipoproteins were significantly different between sepsis and control patients. Levels of the branched-chain amino acids (BCAA) valine (median 43.3 [29.0-53.7] vs. 64.3 [47.7-72.3] normalized signal intensity units; p = 0.005), leucine (57.0 [38.4-71.0] vs. 73.0 [54.3-86.3]; p = 0.034) and isoleucine (15.2 [10.9-21.6] vs. 17.9 [16.1-24.4]; p = 0.048) were lower in patients with septic shock compared to those without. Similarly, BCAA were lower in ICU non-survivors compared to survivors, and BCAA were good discriminators for ICU and 28-day mortality. In uni- and multivariable logistic regression analyses, higher BCAA levels were associated with decreased ICU- and 28-day mortality. In conclusion, metabolomics using 1H NMR spectroscopy showed encouraging potential for personalized medicine in sepsis. BCAA was significantly lower in sepsis non-survivors and may be used as early biomarkers for outcome prediction.