Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
BMC Biol ; 21(1): 153, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37430246

RESUMO

BACKGROUND: The standard evolutionary theory of ageing proposes that ageing occurs because of a trade-off between reproduction and longevity. Eusocial insect queens exhibit positive fecundity-longevity associations and so have been suggested to be counter-examples through not expressing costs of reproduction and through remodelling conserved genetic and endocrine networks regulating ageing and reproduction. If so, eusocial evolution from solitary ancestors with negative fecundity-longevity associations must have involved a stage at which costs of reproduction were suppressed and fecundity and longevity became positively associated. Using the bumblebee (Bombus terrestris), we experimentally tested whether queens in annual eusocial insects at an intermediate level of eusocial complexity experience costs of reproduction, and, using mRNA-seq, the extent to which they exhibit a remodelling of relevant genetic and endocrine networks. Specifically, we tested whether costs of reproduction are present but latent, or whether a remodelling of relevant genetic and endocrine networks has already occurred allowing queens to reproduce without costs. RESULTS: We experimentally increased queens' costs of reproduction by removing their eggs, which caused queens to increase their egg-laying rate. Treatment queens had significantly reduced longevity relative to control queens whose egg-laying rate was not increased. Reduced longevity in treatment queens was not caused by increased worker-to-queen aggression or by increased overall activity in queens. In addition, treatment and control queens differed in age-related gene expression based on mRNA-seq in both their overall expression profiles and the expression of ageing-related genes. Remarkably, these differences appeared to occur principally with respect to relative age, not chronological age. CONCLUSIONS: This study represents the first simultaneously phenotypic and transcriptomic experimental test for a longevity cost of reproduction in eusocial insect queens. The results support the occurrence of costs of reproduction in annual eusocial insects of intermediate social complexity and suggest that reproductive costs are present but latent in queens of such species, i.e. that these queens exhibit condition-dependent positive fecundity-longevity associations. They also raise the possibility that a partial remodelling of genetic and endocrine networks underpinning ageing may have occurred in intermediately eusocial species such that, in unmanipulated conditions, age-related gene expression depends more on chronological than relative age.


Assuntos
Fertilidade , Reprodução , Abelhas/genética , Animais , Envelhecimento , Longevidade , RNA Mensageiro
2.
Proc Biol Sci ; 290(2008): 20231420, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37817595

RESUMO

Conflict and conflict resolution have been argued to be fundamental to the major transitions in evolution. These were key events in life's history in which previously independently living individuals cooperatively formed a higher-level individual, such as a multicellular organism or eusocial colony. Conflict has its central role because, to proceed stably, the evolution of individuality in each major transition required within-individual conflict to be held in check. This review revisits the role of conflict and conflict resolution in the major transitions, addressing recent work arguing for a minor role. Inclusive fitness logic suggests that differences between the kin structures of clones and sexual families support the absence of conflict at the origin of multicellularity but, by contrast, suggest that key conflicts existed at the origin of eusociality. A principal example is conflict over replacing the founding queen (queen replacement). Following the origin of each transition, conflict remained important, because within-individual conflict potentially disrupts the attainment of maximal individuality (organismality) in the system. The conclusion is that conflict remains central to understanding the major transitions, essentially because conflict arises from differences in inclusive fitness optima while conflict resolution can help the system attain a high degree of coincidence of inclusive fitness interests.


Assuntos
Evolução Biológica , Negociação , Humanos , Comportamento Sexual
3.
Theor Popul Biol ; 154: 40-50, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37640113

RESUMO

Parentage exclusion probability is usually calculated to evaluate the informativeness of a set of markers for, and the statistical power of, a parentage analysis. Equations for parentage exclusion probability have been derived in various scenarios such as paternity exclusion when maternity is known or unknown or when candidate males are unrelated or loosely related (being from the same subpopulation) to the father. All previous work assumes a diploid species. Although marker-based parentage analyses have been conducted in haploidiploid species (such as ants, bees and wasps) for diploid offspring at the individual level or haploid offspring at the class level, rigorously derived formulations of parentage exclusion probability for haploid offspring at the individual level are lacking, which prevents the precise evaluation of the informativeness for and the statistical power of a parentage analysis. In this study we derive equations for the exclusion probability of maternity of a haploid male when multiple mother candidates (workers or queens) are unrelated or fullsibs to the mother. The usefulness of the equations is exemplified by numerical examples, and the results are discussed in the context of the study of worker reproductivity in eusocial haplodiploid species. The results are especially valuable for an optimal experimental design in determining sampling intensities (e.g. number of markers and number of individuals) to achieve satisfactory statistical power of a parentage analysis in investigating workers' reproductivity in eusocial haplodiploid species.


Assuntos
Formigas , Mães , Humanos , Gravidez , Masculino , Feminino , Animais , Probabilidade
4.
Nature ; 543(7646): 547-549, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28297711

RESUMO

Insect pollinators such as bumblebees (Bombus spp.) are in global decline. A major cause of this decline is habitat loss due to agricultural intensification. A range of global and national initiatives aimed at restoring pollinator habitats and populations have been developed. However, the success of these initiatives depends critically upon understanding how landscape change affects key population-level parameters, such as survival between lifecycle stages, in target species. This knowledge is lacking for bumblebees, because of the difficulty of systematically finding and monitoring colonies in the wild. We used a combination of habitat manipulation, land-use and habitat surveys, molecular genetics and demographic and spatial modelling to analyse between-year survival of family lineages in field populations of three bumblebee species. Here we show that the survival of family lineages from the summer worker to the spring queen stage in the following year increases significantly with the proportion of high-value foraging habitat, including spring floral resources, within 250-1,000 m of the natal colony. This provides evidence for a positive impact of habitat quality on survival and persistence between successive colony cycle stages in bumblebee populations. These findings also support the idea that conservation interventions that increase floral resources at a landscape scale and throughout the season have positive effects on wild pollinators in agricultural landscapes.


Assuntos
Abelhas/fisiologia , Conservação dos Recursos Naturais/métodos , Ecossistema , Agricultura , Animais , Abelhas/classificação , Comportamento Alimentar , Feminino , Hibernação , Masculino , Polinização , Estações do Ano , Análise de Sobrevida
5.
Nature ; 590(7846): 392-394, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33526901
6.
Proc Biol Sci ; 288(1944): 20202639, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33563116

RESUMO

Genetic bottlenecks can limit the success of populations colonizing new ranges. However, successful colonizations can occur despite bottlenecks, a phenomenon known as the genetic paradox of invasion. Eusocial Hymenoptera such as bumblebees (Bombus spp.) should be particularly vulnerable to genetic bottlenecks, since homozygosity at the sex-determining locus leads to costly diploid male production (DMP). The Tree Bumblebee (Bombus hypnorum) has rapidly colonized the UK since 2001 and has been highlighted as exemplifying the genetic paradox of invasion. Using microsatellite genotyping, combined with the first genetic estimates of DMP in UK B. hypnorum, we tested two alternative genetic hypotheses ('bottleneck' and 'gene flow' hypotheses) for B. hypnorum's colonization of the UK. We found that the UK population has not undergone a recent severe genetic bottleneck and exhibits levels of genetic diversity falling between those of widespread and range-restricted Bombus species. Diploid males occurred in 15.4% of reared colonies, leading to an estimate of 21.5 alleles at the sex-determining locus. Overall, the findings show that this population is not bottlenecked, instead suggesting that it is experiencing continued gene flow from the continental European source population with only moderate loss of genetic diversity, and does not exemplify the genetic paradox of invasion.


Assuntos
Abelhas/genética , Evolução Molecular , Variação Genética , Alelos , Animais , Diploide , Fluxo Gênico , Masculino , Repetições de Microssatélites
7.
Mol Ecol ; 30(3): 718-735, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33238067

RESUMO

The queen-worker caste system of eusocial insects represents a prime example of developmental polyphenism (environmentally-induced phenotypic polymorphism) and is intrinsic to the evolution of advanced eusociality. However, the comparative molecular basis of larval caste determination and subsequent differentiation in the eusocial Hymenoptera remains poorly known. To address this issue within bees, we profiled caste-associated gene expression in female larvae of the intermediately eusocial bumblebee Bombus terrestris. In B. terrestris, female larvae experience a queen-dependent period during which their caste fate as adults is determined followed by a nutrition-sensitive period also potentially affecting caste fate but for which the evidence is weaker. We used mRNA-seq and qRT-PCR validation to isolate genes differentially expressed between each caste pathway in larvae at developmental stages before and after each of these periods. We show that differences in gene expression between caste pathways are small in totipotent larvae, then peak after the queen-dependent period. Relatively few novel (i.e., taxonomically-restricted) genes were differentially expressed between castes, though novel genes were significantly enriched in late-instar larvae in the worker pathway. We compared sets of caste-associated genes in B. terrestris with those reported from the advanced eusocial honeybee, Apis mellifera, and found significant but relatively low levels of overlap of gene lists between the two species. These results suggest both the existence of low numbers of shared toolkit genes and substantial divergence in caste-associated genes between Bombus and the advanced eusocial Apis since their last common eusocial ancestor.


Assuntos
Abelhas , Comportamento Animal , Perfilação da Expressão Gênica , Animais , Abelhas/genética , Feminino , Expressão Gênica , Larva/genética
8.
Am Nat ; 193(2): 256-266, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30720369

RESUMO

Resource inheritance is a major source of conflict in animal societies. However, the assumptions and predictions of models of conflict over resource inheritance have not been systematically tested within a single system. We developed an inclusive fitness model for annual eusocial Hymenoptera that predicts a zone of conflict in which future reproductive workers are selected to enforce nest inheritance before the queen is selected to cede the nest. We experimentally tested key elements of this model in the bumblebee Bombus terrestris. In colonies from which queens were sequentially removed, queen tenure was significantly negatively associated with worker male production, confirming that workers gain direct fitness by usurping the queen. In unmanipulated colonies, queen fecundity decreased significantly over the latter part of the colony cycle, confirming that workers' indirect fitness from maintaining queens declines over time. Finally, in an experiment simulating loss of queen fecundity by removal of queens' eggs, worker-to-queen aggression increased significantly and aggressive workers were significantly more likely to become egg layers, consistent with workers monitoring queen fecundity to assess the net benefit of future reproduction. Overall, by upholding key assumptions and predictions of the model, our results provide novel empirical support for kin-selected conflict over resource inheritance.


Assuntos
Agressão , Abelhas/fisiologia , Fertilidade , Longevidade , Modelos Biológicos , Animais , Feminino , Masculino , Reprodução
9.
Proc Biol Sci ; 284(1858)2017 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-28701554

RESUMO

Eusocial insects provide special opportunities to elucidate the evolution of ageing as queens have apparently evaded costs of reproduction and reversed the fecundity-longevity trade-off generally observed in non-social organisms. But how reproduction affects longevity in eusocial insects has rarely been tested experimentally. In this study, we took advantage of the reproductive plasticity of workers to test the causal role of reproduction in determining longevity in eusocial insects. Using the eusocial bumblebee Bombus terrestris, we found that, in whole colonies, in which workers could freely 'choose' whether to become reproductive, workers' level of ovarian activation was significantly positively associated with longevity and ovary-active workers significantly outlived ovary-inactive workers. By contrast, when reproductivity was experimentally induced in randomly selected workers, thereby decoupling it from other traits, workers' level of ovarian activation was significantly negatively associated with longevity and ovary-active workers were significantly less long-lived than ovary-inactive workers. These findings show that workers experience costs of reproduction and suggest that intrinsically high-quality individuals can overcome these costs. They also raise the possibility that eusocial insect queens exhibit condition-dependent longevity and hence call into question whether eusociality entails a truly reversed fecundity-longevity trade-off involving a fundamental remodelling of conserved genetic and endocrine networks underpinning ageing.


Assuntos
Envelhecimento , Abelhas/fisiologia , Fertilidade , Longevidade , Animais , Evolução Biológica , Feminino , Reprodução
10.
Ecol Appl ; 26(3): 726-39, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27411246

RESUMO

Bumble bees (Bombus spp.) are important pollinators of both crops and wildflowers. Their contribution to this essential ecosystem service has been threatened over recent decades by changes in land use, which have led to declines in their populations. In order to design effective conservation measures, it is important to understand the effects of variation in landscape composition and structure on the foraging activities of worker bumble bees. This is because the viability of individual colonies is likely to be affected by the trade-off between the energetic costs of foraging over greater distances and the potential gains from access to additional resources. We used field surveys, molecular genetics, and fine resolution remote sensing to estimate the locations of wild bumble bee nests and to infer foraging distances across a 20-km² agricultural landscape in southern England, UK. We investigated five species, including the rare B. ruderatus and ecologically similar but widespread B. hortorum. We compared worker foraging distances between species and examined how variation in landscape composition and structure affected foraging distances at the colony level. Mean worker foraging distances differed significantly between species. Bombus terrestris, B. lapidarius, and B. ruderatus exhibited significantly greater mean foraging distances (551, 536, and 501 m, respectively) than B. hortorum and B. pascuorum (336 and 272 m, respectively). There was wide variation in worker foraging distances between colonies of the same species, which was in turn strongly influenced by the amount and spatial configuration of available foraging habitats. Shorter foraging distances were found for colonies where the local landscape had high coverage and low fragmentation of semi-natural vegetation, including managed agri-environmental field margins. The strength of relationships between different landscape variables and foraging distance varied between species, for example the strongest relationship for B. ruderatus being with floral cover of preferred forage plants. Our findings suggest that management of landscape composition and configuration has the potential to reduce foraging distances across a range of bumble bee species. There is thus potential for improvements in the design and implementation of landscape management options, such as agri-environment schemes, aimed at providing foraging habitat for bumble bees and enhancing crop pollination services.


Assuntos
Abelhas/fisiologia , Ecossistema , Comportamento Alimentar/fisiologia , Animais , Abelhas/genética , Monitoramento Ambiental , Genótipo , Especificidade da Espécie
11.
Proc Biol Sci ; 281(1793)2014 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-25165765

RESUMO

Division of labour is central to the ecological success of eusocial insects, yet the evolutionary factors driving increases in complexity in division of labour are little known. The size-complexity hypothesis proposes that, as larger colonies evolve, both non-reproductive and reproductive division of labour become more complex as workers and queens act to maximize inclusive fitness. Using a statistically robust phylogenetic comparative analysis of social and environmental traits of species within the ant tribe Attini, we show that colony size is positively related to both non-reproductive (worker size variation) and reproductive (queen-worker dimorphism) division of labour. The results also suggested that colony size acts on non-reproductive and reproductive division of labour in different ways. Environmental factors, including measures of variation in temperature and precipitation, had no significant effects on any division of labour measure or colony size. Overall, these results support the size-complexity hypothesis for the evolution of social complexity and division of labour in eusocial insects. Determining the evolutionary drivers of colony size may help contribute to our understanding of the evolution of social complexity.


Assuntos
Formigas/fisiologia , Comportamento Animal , Comportamento Social , Animais , Comportamento Apetitivo , Evolução Biológica , Filogenia , Densidade Demográfica
12.
Mol Ecol ; 23(14): 3384-95, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24980963

RESUMO

Land-use changes have threatened populations of many insect pollinators, including bumble bees. Patterns of dispersal and gene flow are key determinants of species' ability to respond to land-use change, but have been little investigated at a fine scale (<10 km) in bumble bees. Using microsatellite markers, we determined the fine-scale spatial genetic structure of populations of four common Bombus species (B. terrestris, B. lapidarius, B. pascuorum and B. hortorum) and one declining species (B. ruderatus) in an agricultural landscape in Southern England, UK. The study landscape contained sown flower patches representing agri-environment options for pollinators. We found that, as expected, the B. ruderatus population was characterized by relatively low heterozygosity, number of alleles and colony density. Across all species, inbreeding was absent or present but weak (FIS  = 0.01-0.02). Using queen genotypes reconstructed from worker sibships and colony locations estimated from the positions of workers within these sibships, we found that significant isolation by distance was absent in B. lapidarius, B. hortorum and B. ruderatus. In B. terrestris and B. pascuorum, it was present but weak; for example, in these two species, expected relatedness of queens founding colonies 1 m apart was 0.02. These results show that bumble bee populations exhibit low levels of spatial genetic structure at fine spatial scales, most likely because of ongoing gene flow via widespread queen dispersal. In addition, the results demonstrate the potential for agri-environment scheme conservation measures to facilitate fine-scale gene flow by creating a more even distribution of suitable habitats across landscapes.


Assuntos
Abelhas/genética , Ecossistema , Fluxo Gênico , Genética Populacional , Agricultura , Animais , Conservação dos Recursos Naturais , Inglaterra , Feminino , Variação Genética , Endogamia , Desequilíbrio de Ligação , Repetições de Microssatélites , Análise de Sequência de DNA
13.
Nature ; 493(7434): 612-3, 2013 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-23334422
14.
Biol Lett ; 9(3): 20130056, 2013 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-23637392

RESUMO

In eusocial insects, inclusive fitness theory predicts potential queen-worker conflict over the timing of events in colony life history. Whether queens or workers control the timing of these events is poorly understood. In the bumble-bee Bombus terrestris, queens exhibit a 'switch point' in which they switch from laying diploid eggs yielding females (workers and new queens) to laying haploid eggs yielding males. By rearing foundress queens whose worker offspring were removed as pupae and sexing their eggs using microsatellite genotyping, we found that queens kept in the complete absence of adult workers still exhibit a switch point. Moreover, the timing of their switch points relative to the start of egg-laying did not differ significantly from that of queens allowed to produce normal colonies. The finding that bumble-bee queens can express the switch point in the absence of workers experimentally demonstrates queen control of a key life-history event in eusocial insects. In addition, we found no evidence that workers affect the timing of the switch point either directly or indirectly via providing cues to queens, suggesting that workers do not fully express their interests in queen-worker conflicts over colony life history.


Assuntos
Abelhas/fisiologia , Comportamento Animal , Estágios do Ciclo de Vida , Animais , Abelhas/crescimento & desenvolvimento , Feminino
15.
J Gerontol A Biol Sci Med Sci ; 78(12): 2240-2250, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37584665

RESUMO

The standard evolutionary theory of aging predicts a negative relationship (trade-off) between fecundity and longevity. However, in principle, the fecundity-longevity relationship can become positive in populations in which individuals have unequal resources. Positive fecundity-longevity relationships also occur in queens of eusocial insects such as ants and bees. Developmental diet is likely to be central to determining trade-offs as it affects key fitness traits, but its exact role remains uncertain. For example, in Drosophila melanogaster, changes in adult diet can affect fecundity, longevity, and gene expression throughout life, but it is unknown how changes in developmental (larval) diet affect fecundity-longevity relationships and gene expression in adults. Using D. melanogaster, we tested the hypothesis that varying developmental diets alters the directionality of fecundity-longevity relationships in adults, and characterized associated gene expression changes. We reared larvae on low (20%), medium (100%), and high (120%) yeast diets, and transferred adult females to a common diet. We measured fecundity and longevity of individual adult females and profiled gene expression changes with age. Adult females raised on different larval diets exhibited fecundity-longevity relationships that varied from significantly positive to significantly negative, despite minimal differences in mean lifetime fertility or longevity. Treatments also differed in age-related gene expression, including for aging-related genes. Hence, the sign of fecundity-longevity relationships in adult insects can be altered and even reversed by changes in larval diet quality. By extension, larval diet differences may represent a key mechanistic factor underpinning positive fecundity-longevity relationships observed in species such as eusocial insects.


Assuntos
Drosophila melanogaster , Fertilidade , Feminino , Abelhas/genética , Animais , Drosophila melanogaster/genética , Longevidade/genética , Dieta , Larva , Saccharomyces cerevisiae , Expressão Gênica
16.
Proc Biol Sci ; 278(1723): 3313-20, 2011 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-21920980

RESUMO

Social evolution is a central topic in evolutionary biology, with the evolution of eusociality (societies with altruistic, non-reproductive helpers) representing a long-standing evolutionary conundrum. Recent critiques have questioned the validity of the leading theory for explaining social evolution and eusociality, namely inclusive fitness (kin selection) theory. I review recent and past literature to argue that these critiques do not succeed. Inclusive fitness theory has added fundamental insights to natural selection theory. These are the realization that selection on a gene for social behaviour depends on its effects on co-bearers, the explanation of social behaviours as unalike as altruism and selfishness using the same underlying parameters, and the explanation of within-group conflict in terms of non-coinciding inclusive fitness optima. A proposed alternative theory for eusocial evolution assumes mistakenly that workers' interests are subordinate to the queen's, contains no new elements and fails to make novel predictions. The haplodiploidy hypothesis has yet to be rigorously tested and positive relatedness within diploid eusocial societies supports inclusive fitness theory. The theory has made unique, falsifiable predictions that have been confirmed, and its evidence base is extensive and robust. Hence, inclusive fitness theory deserves to keep its position as the leading theory for social evolution.


Assuntos
Altruísmo , Evolução Biológica , Aptidão Genética/genética , Modelos Genéticos , Seleção Genética , Comportamento Social
17.
Curr Biol ; 17(13): R519-20, 2007 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-17610835

RESUMO

A recent study shows that, in social insects where workers suppress or 'police' the reproduction of nestmate workers, only a subset of workers act as police. This confirms that policing can serve a collective rather than a selfish interest.


Assuntos
Formigas , Controle Comportamental , Comportamento Social , Animais , Formigas/genética , Evolução Biológica , Feminino , Masculino , Reprodução
18.
Mol Ecol ; 19(13): 2661-74, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20561194

RESUMO

The conservation genetics of bees is of particular interest because many bee species are in decline, so jeopardizing the essential ecosystem service of plant pollination that they provide. In addition, as social haplodiploids, inbred bees may be vulnerable to the extra genetic load represented by the production of sterile diploid males. Using microsatellite markers, we investigated the genetic structure of populations of the Great Yellow Bumblebee (Bombus distinguendus Morawitz) in the UK, where this species has undergone a precipitous decline. By means of a mixture of analytical methods and simulation, we also extended--and then applied--genetic methods for estimating foraging distance and nest density in wild bees. B. distinguendus populations were characterized by low expected heterozygosity and allelic richness, inbreeding coefficients not significantly different from zero, absence of detected diploid males, absence of substantial demographic bottlenecking, and population substructuring at large (c. 100+ km) but not small (10s of km) spatial scales. The minimum average effective population size at our sampling sites was low (c. 25). In coastal grassland (machair), the estimated modal foraging distance of workers was 391 m, with 95% of foraging activity occurring within 955 m of the nest, and estimated nest density was 19.3 nests km(-2). These findings show that B. distinguendus exhibits some genetic features of scarce, declining or fragmented populations. Moreover, B. distinguendus workers appear to forage over above-average distances and nests remain thinly distributed even in current strongholds. These considerations should inform future conservation actions for this and similar species.


Assuntos
Comportamento Apetitivo , Abelhas/genética , Genética Populacional , Comportamento de Nidação , Animais , Conservação dos Recursos Naturais , Feminino , Genótipo , Geografia , Desequilíbrio de Ligação , Masculino , Repetições de Microssatélites , Modelos Estatísticos , Reino Unido
19.
Nature ; 430(6999): 557-60, 2004 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-15282605

RESUMO

The evolution of extreme cooperation, as found in eusocial insects (those with a worker caste), is potentially undermined by selfish reproduction among group members. In some eusocial Hymenoptera (ants, bees and wasps), workers can produce male offspring from unfertilized eggs. Kin selection theory predicts levels of worker reproduction as a function of the relatedness structure of the workers' natal colony and the colony-level costs of worker reproduction. However, the theory has been only partially successful in explaining levels of worker reproduction. Here we show that workers of a eusocial bumble bee (Bombus terrestris) enter unrelated, conspecific colonies in which they then produce adult male offspring, and that such socially parasitic workers reproduce earlier and are significantly more reproductive and aggressive than resident workers that reproduce within their own colonies. Explaining levels of worker reproduction, and hence the potential of worker selfishness to undermine the evolution of cooperation, will therefore require more than simply a consideration of the kin-selected interests of resident workers. It will also require knowledge of the full set of reproductive options available to workers, including intraspecific social parasitism.


Assuntos
Abelhas/fisiologia , Parasitos/fisiologia , Reprodução/fisiologia , Comportamento Social , Agressão/fisiologia , Envelhecimento/fisiologia , Animais , Abelhas/genética , Comportamento Animal/fisiologia , Evolução Biológica , Feminino , Genótipo , Masculino , Repetições de Microssatélites/genética , Parasitos/genética
20.
Ecol Evol ; 9(3): 986-997, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30805135

RESUMO

Molecular methods have greatly increased our understanding of the previously cryptic spatial ecology of bumble bees (Bombus spp.), with knowledge of the spatial ecology of these bees being central to conserving their essential pollination services. Bombus hypnorum, the Tree Bumble Bee, is unusual in that it has recently rapidly expanded its range, having colonized much of the UK mainland since 2001. However, the spatial ecology of B. hypnorum has not previously been investigated. To address this issue, and to investigate whether specific features of the spatial ecology of B. hypnorum are associated with its rapid range expansion, we used 14 microsatellite markers to estimate worker foraging distance, nest density, between-year lineage survival rate and isolation by distance in a representative UK B. hypnorum population. After assigning workers to colonies based on full or half sibship, we estimated the mean colony-specific worker foraging distance as 103.6 m, considerably less than values reported from most other bumble bee populations. Estimated nest density was notably high (2.56 and 0.72 colonies ha-1 in 2014 and 2015, respectively), estimated between-year lineage survival rate was 0.07, and there was no evidence of fine-scale isolation by distance. In addition, genotyping stored sperm dissected from sampled queens confirmed polyandry in this population (mean minimum mating frequency of 1.7 males per queen). Overall, our findings establish critical spatial ecological parameters and the mating system of this unusual bumble bee population and suggest that short worker foraging distances and high nest densities are associated with its rapid range expansion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA