Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 15(27): e1901224, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31095888

RESUMO

Due to their high-power density and long lifetime, microsupercapacitors have been considered as an efficient energy supply/storage solution for the operation of small electronic devices. However, their fabrication remains confined to 2D thin-film microdevices with limited areal energy. In this study, the integration of all-solid-state 3D interdigitated microsupercapacitors on 4 in. silicon wafers with record energy density is demonstrated. The device electrodes are composed of a pseudocapacitive hydrated ruthenium dioxide RuO2 deposited onto highly porous current collectors. The encapsulated devices exhibit cell capacitance of 812 mF cm-2 per footprint area at an energy density of 329 mJ cm-2 , which is the highest value ever reported for planar configuration. These components achieve one of the highest surface energy/power density trade-offs and address the issue of electrical energy storage of modern electronics.

2.
Langmuir ; 33(43): 12193-12203, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-28960992

RESUMO

DNA-directed assembly of nano-objects as a means to manufacture advanced nanomaterial architectures has been the subject of many studies. However, most applications have dealt with noble metals as there are fundamental difficulties to work with other materials. In this work, we propose a generic and systematic approach for functionalizing and characterizing oxide surfaces with single-stranded DNA oligonucleotides. This protocol is applied to aluminum and copper oxide nanoparticles due to their great interest for the fabrication of highly energetic heterogeneous nanocomposites. The surface densities of streptavidin and biotinylated DNA oligonucleotides are precisely quantified combining atomic absorption spectroscopy with conventional dynamic light scattering and fluorometry and maximized to provide a basis for understanding the grafting mechanism. First, the streptavidin coverage is consistently below 20% of the total surface for both nanoparticles. Second, direct and unspecific grafting of DNA single strands onto Al and CuO nanoparticles largely dominates the overall functionalization process: ∼95% and 90% of all grafted DNA strands are chemisorbed on the CuO and Al nanoparticle surfaces, respectively. Measurements of hybridization efficiency indicate that only ∼5 and ∼10% of single-stranded oligonucleotides grafted onto the CuO and Al surfaces are involved in the hybridization process, corresponding precisely to the streptavidin coverage, as evidenced by the occupancy of 0.9 and 1.2 oligonucleotides per protein. The hybridization efficiency of single-stranded oligonucleotides chemisorbed on CuO and Al without streptavidin coating decreases to only ∼2%, justifying the use of streptavidin despite its poor surface occupancy. Finally, the structure of directly chemisorbed DNA strands onto oxide surfaces is examined and discussed.


Assuntos
Nanopartículas , Cobre , DNA , Hibridização de Ácido Nucleico , Oligonucleotídeos , Óxidos
3.
APL Bioeng ; 8(2): 026122, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38894959

RESUMO

Micropipette aspiration (MPA) is one of the gold standards for quantifying biological samples' mechanical properties, which are crucial from the cell membrane scale to the multicellular tissue. However, relying on the manipulation of individual home-made glass pipettes, MPA suffers from low throughput and no automation. Here, we introduce the sliding insert micropipette aspiration method, which permits parallelization and automation, thanks to the insertion of tubular pipettes, obtained by photolithography, within microfluidic channels. We show its application both at the lipid bilayer level, by probing vesicles to measure membrane bending and stretching moduli, and at the tissue level by quantifying the viscoelasticity of 3D cell aggregates. This approach opens the way to high-throughput, quantitative mechanical testing of many types of biological samples, from vesicles and individual cells to cell aggregates and explants, under dynamic physico-chemical stimuli.

4.
Biosensors (Basel) ; 13(12)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38131756

RESUMO

Blood filtration using micro-fabricated devices is an interdisciplinary topic of research and innovation driven by clinical applications in cytapheresis, cardiovascular disease monitoring, or liquid biopsy. In this paper, we demonstrate that a micro-perforated membrane can be equipped with sensing microelectrodes for detecting, in situ and in real-time, the capture of cellular material during ex vivo filtration of whole blood under high flow rates. This work describes the fabrication process of the sift and detection microdevice. We demonstrate that reliable electrical signals can be measured in whole blood samples flowing inside a fluidic system at typical flow rates, as large as 11.5 mL/min, hence allowing for large-volume sample processing. The in situ monitoring of the electrical impedance of the microelectrodes is shown to characterize the accumulation of living circulating cells retained by the filtrating membrane, opening interesting applications for monitoring blood filtration processes.


Assuntos
Espectroscopia Dielétrica , Microeletrodos , Impedância Elétrica
5.
Microsyst Nanoeng ; 8: 21, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251687

RESUMO

Flexible intracerebral probes for neural recording and electrical stimulation have been the focus of many research works to achieve better compliance with the surrounding tissue while minimizing rejection. Strategies have been explored to find the best way to insert flexible probes into the brain while maintaining their flexibility once positioned. Here, we present a novel and versatile scalable batch fabrication approach to deliver ultrathin and flexible probes consisting of a silk-parylene bilayer. The biodegradable silk layer, whose degradation time is programmable, provides a temporary and programmable stiffener to allow the insertion of ultrathin parylene-based flexible devices. Our innovative and robust batch fabrication technology allows complete freedom over probe design in terms of materials, size, shape, and thickness. We demonstrate successful ex vivo insertion of the probe with acute high-fidelity recordings of epileptic seizures in field potentials as well as single-unit action potentials in mouse brain slices. Our novel technological solution for implanting ultraflexible devices in the brain while minimizing rejection risks shows high potential for use in both brain research and clinical therapies.

6.
ACS Nano ; 15(3): 5096-5108, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33621048

RESUMO

The fabrication and integration of sub-millimeter magnetic materials into predefined circuits is of major importance for the realization of portable devices designed for telecommunications, automotive, biomedical, and space applications but remains highly challenging. We report here a versatile approach for the fabrication and direct integration of nanostructured magnetic materials of controlled shaped at specific locations onto silicon substrates. The magnetophoresis-assisted capillary assembly of magnetic nanoparticles, either spherical or anisotropic, leads to the fabrication of high-performance Co-based permanent magnets and Fe-based supercrystals. Integrated sub-millimeter magnets as well as millimeter self-standing magnets exhibiting magnetic properties competing with NdFeB-based composites were obtained through this cost- and time-efficient process. The proof-of-concept of electromagnetic actuation of a micro-electromechanical system cantilever by means of these supercrystals highlights their potentiality as efficient integrated magnetic materials within nomadic devices.

7.
Langmuir ; 26(16): 13251-5, 2010 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-20695566

RESUMO

We investigated the interactions between liquid, gas, and solid phases in the capillary filling process of closed-end nanochannels. This paper presents theoretical models without and with absorption and diffusion of gas molecules in the liquid. Capillary filling experiments were carried out in closed-end silicon nanochannels with different lengths. The theoretical and measured characteristics of filling length versus time are compared. The results show that the filling process consists of two stages. The first stage resembles the capillary filling process in an open-end nanochannel. However, a remarkable discrepancy between the experimental results and the theory without gas absorption is observed in the second stage. A closer investigation of the second stage reveals that the dissolution of gas in the liquid is important and can be explained by the model with gas absorption and diffusion.

8.
Bioelectrochemistry ; 128: 17-29, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30884360

RESUMO

The early formation of electroactive biofilms was investigated with gold electrodes inoculated with Geobacter sulfurreducens. Biofilms were formed under an applied potential of 0.1 V/SCE, with a single batch of acetate 10 mM, on flat gold electrodes with different random surface roughness. Roughness with arithmetical mean height (Sa) ranging from 0.5 to 6.7 µm decreased the initial latency time, and increased the current density by a factor of 2.7 to 6.7 with respect to nano-rough electrodes (Sa = 4.5 nm). The current density increased linearly with Sa up to 14.0 A·m-2 for Sa of 6.7 µm. This linear relationship remained valid for porous gold. In this case, the biofilm rapidly formed a uniform layer over the pores, so porosity impacted the current only by modifying the roughness of the upper surface. The current density thus reached 14.8 ±â€¯1.1 A·m-2 with Sa of 7.6 µm (7 times higher than the nano-rough electrodes). Arrays of 500-µm-high micro-pillars were roughened following the same protocol. In this case, roughening resulted in a modest gain around 1.3-fold. A numerical model showed that the modest enhancement was due to ion transport not being sufficient to mitigate the local acidification of the structure bottom.


Assuntos
Fontes de Energia Bioelétrica , Técnicas Eletroquímicas/instrumentação , Eletrodos , Geobacter/metabolismo , Biofilmes/crescimento & desenvolvimento , Geobacter/crescimento & desenvolvimento , Ouro/química , Microscopia Eletrônica de Varredura , Porosidade , Propriedades de Superfície
9.
Bioelectrochemistry ; 121: 191-200, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29482111

RESUMO

Smooth and nano-rough flat gold electrodes were manufactured with controlled Ra of 0.8 and 4.5nm, respectively. Further nano-rough surfaces (Ra 4.5nm) were patterned with arrays of micro-pillars 500µm high. All these electrodes were implemented in pure cultures of Geobacter sulfurreducens, under a constant potential of 0.1V/SCE and with a single addition of acetate 10mM to check the early formation of microbial anodes. The flat smooth electrodes produced an average current density of 0.9A·m-2. The flat nano-rough electrodes reached 2.5A·m-2 on average, but with a large experimental deviation of ±2.0A·m-2. This large deviation was due to the erratic colonization of the surface but, when settled on the surface, the cells displayed current density that was directly correlated to the biofilm coverage ratio. The micro-pillars considerably improved the experimental reproducibility by offering the cells a quieter environment, facilitating biofilm development. Current densities of up to 8.5A·m-2 (per projected surface area) were thus reached, in spite of rate limitation due to the mass transport of the buffering species, as demonstrated by numerical modelling. Nano-roughness combined with micro-structuring increased current density by a factor close to 10 with respect to the smooth flat surface.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Biofilmes/crescimento & desenvolvimento , Geobacter/fisiologia , Ouro/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Eletricidade , Eletrodos , Transporte de Elétrons , Desenho de Equipamento , Propriedades de Superfície
10.
Lab Chip ; 15(3): 833-8, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-25483271

RESUMO

In this work, we present a novel fabrication process that enables the monolithic integration of lateral porous silicon membranes into single-layer planar microchannels. This fabrication technique relies on the patterning of local electrodes to guide pore formation horizontally within the membrane and on the use of silicon-on-insulator substrates to spatially localize porous silicon within the channel depth. The feasibility of our approach is studied by current flow analysis using the finite element method and supported by creating 10 µm long mesoporous membranes within 20 µm deep microchannels. The fabricated membranes are demonstrated to be potentially useful for dead-end microfiltration by adequately retaining 300 nm diameter beads while macromolecules such as single-stranded DNA and immunoglobulin G permeate the membrane. The experimentally determined fluidic resistance is in accordance with the theoretical value expected from the estimated pore size and porosity. The work presented here is expected to greatly simplify the integration of membranes capable of size exclusion based separation into fluidic devices and opens doors to the use of porous silicon in planar lab on a chip devices.


Assuntos
Técnicas Analíticas Microfluídicas , Silício/química , DNA de Cadeia Simples/química , Hidrodinâmica , Imunoglobulina G/química , Técnicas Analíticas Microfluídicas/instrumentação , Tamanho da Partícula , Porosidade , Propriedades de Superfície
11.
Talanta ; 69(3): 757-62, 2006 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18970634

RESUMO

Liquid crystalline thin films elastomers that are able to bind pesticides have been developed. The synthesis involves grafting mesogen and crosslinkable groups on a polysiloxane chain in the presence of a template molecule. The molecular imprinted material is obtained after thin film deposition, UV crosslinking and washing. Experiments of readsorption of pesticide are presented. Development of a multisensor platform based on thermal and capacitive sensors is described and tests of deposition of the polymer film are presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA