Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 28(69): e202202260, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36069308

RESUMO

Surface integration of molecular catalysts inspired from the active sites of hydrogenase enzymes represents a promising route towards developing noble metal-free and sustainable technologies for H2 production. Efficient and stable catalyst anchoring is a key aspect to enable this approach. Herein, we report the preparation and electrochemical characterization of an original diironhexacarbonyl complex including two pyrene groups per catalytic unit in order to allow for its smooth integration, through π-interactions, onto multiwalled carbon nanotube-based electrodes. In this configuration, the grafted catalyst could reach turnover numbers for H2 production (TONH2 ) of up to 4±2×103 within 20 h of bulk electrolysis, operating at neutral pH. Post operando analysis of catalyst functionalized electrodes revealed the degradation of the catalytic unit occurred via loss of the iron carbonyl units, while the anchoring groups and most part of the ligand remained attached onto multiwalled carbon nanotubes.


Assuntos
Hidrogenase , Nanotubos de Carbono , Hidrogenase/química , Nanotubos de Carbono/química , Hidrogênio/química , Catálise , Eletrodos
2.
Langmuir ; 35(51): 16925-16934, 2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31756101

RESUMO

Herein, a novel strategy to overcome the influence of π-π stacking on the rod-coil copolymer organization is reported. A diblock copolymer poly(3-hexylthiophene)-block-poly(ethylene glycol methyl ether methacrylate) (P3HT-b-PEGMA) was synthesized by the Huisgen cycloaddition, so-called "click chemistry", combining the PEGMA and P3HT blocks synthesized by atom transfer radical polymerization and Kumada catalyst transfer polymerization, respectively. Using a dip-coating process, we controlled the original film organization of the diblock copolymer by the crystallization of the P3HT block via π-π stacking. The morphology of the P3HT-b-PEGMA films was influenced by the incorporation of gold nanoparticles (GNPs) coated by poly(ethylene glycol) ligands. Indeed, the crystalline structuration of the P3HT sequence was counterbalanced by the addition in the film of gold nanoparticles finely localized within the copolymer PEGMA matrix. Transmission electron microscopy and time-of-flight secondary ion mass spectrometry analysis validated the GNP homogeneous localization into the compatible PEGMA phase. Differential scanning calorimetry showed the rod block crystallization disruption. A morphological transition of the self-assembly is observed by atomic force microscopy from P3HT fibrils into out-of-plane cylinders driven by the nanophase segregation.

3.
Soft Matter ; 14(23): 4874-4880, 2018 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-29850760

RESUMO

Hierarchically organized polymer films are produced with a high level of order from the combination of block copolymer nanophase segregation, "breath figure" methodology and microwave irradiation. A block copolymer based on poly(methyl methacrylate) and poly(n-butylacrylate) featuring cylindrical nanopatterns is involved in the "breath figure" process to create a microporous honeycomb structure. These films are submitted to microwave annealing to enhance the degree of ordering of the nano-segregation without the destruction of the honeycomb microstructure, which is not possible by classical thermal or solvent annealing. Ellipsometry, optical and atomic force microscopy are used to study three key parameters; the substrate nature, the film thickness and the microwave irradiation power. The silicon wafer is the substrate of choice to efficiently act as the heating transfer element and 60 seconds at 10 watts are enough to nicely order the 1 µm thick copolymer films. These conditions are eventually applied on hierarchically organized polymer films to obtain a hexagonal array of 100 nm deep holes within a matrix of perpendicularly aligned nano-cylinders.

5.
Macromol Rapid Commun ; 36(16): 1486-91, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26033431

RESUMO

The functionalization of zinc oxide (ZnO) nanoparticles by poly(3-hexylthiophene) (P3HT) brush is completed by the combination of a mussel inspired biomimetic anchoring group and Huisgen cyclo-addition "click chemistry." Herein, the direct coupling of an azide modified catechol derivative with an alkyne end-functionalized P3HT is described. This macromolecular binding agent is used to access core@corona ZnO@P3HT with a stable and homogeneous conjugated organic corona. Preliminary photoluminescence measurement proves an efficient electron transfer from the donor P3HT to the acceptor ZnO nanoparticles upon grafting, thus demonstrating the potential of such a combination in organic electronics.


Assuntos
Biomimética , Nanopartículas/química , Tiofenos/química , Óxido de Zinco/química , Química Click
6.
Chem Commun (Camb) ; 59(16): 2279-2282, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36734956

RESUMO

Coupling polymer and ionic liquids with electrodes for catalysis is a promising tool for optimization of electrocatalytic CO2 reduction reaction (CO2RR). Here, block copolymer ionic liquids BCPILs were synthesized via controlled radical polymerization and nucleophilic post-substitution to introduce imidazole moieties. We show that, thanks to these PIL functionalities, the BCPIL/Re@HPC/GDL electrode can keep the selectivity toward CO when a higher amount of water is present in the electrolyte than the raw Re@HPC/GDL system. Our results help to understand the development of solid-state ionic liquids for enhanced CO2RR in water-based electrolyte.

7.
ACS Appl Mater Interfaces ; 15(12): 15998-16008, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36940251

RESUMO

Star block copolymer electrolytes with a lithium-ion conducting phase are investigated in the present work to assess the influence of this complex architecture compared to that of the linear one, on both, bulk morphology and ionic conductivity. For that purpose, the controlled synthesis of a series of poly(styrene-co-benzyl methacrylate)-b-poly[oligo(ethylene glycol) methyl ether acrylate] [P(S-co-BzMA)-b-POEGA] block copolymers (BCPs) by reversible addition-fragmentation transfer polymerization was performed from either a monofunctional or a tetrafunctional chain transfer agent containing trithiocarbonate groups. We emphasized how a small amount of styrene (6 mol %) drastically improved the control of the RAFT polymerization of benzyl methacrylate mediated by the tetrafunctional chain transfer agent. Transmission electron microscopy and small-angle X-ray scattering demonstrated a clear segregation of the BCPs in the presence of lithium salt. Interestingly, the star BCPs gave rise to highly ordered lamellar structures as compared to that of the linear analogues. Consequently, the reduced lamellae tortuosity of self-assembled star BCPs improved the lithium conductivity by more than 8 times at 30 °C for ∼30 wt % of the POEGA conductive phase.

8.
Langmuir ; 28(2): 1267-75, 2012 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-22175534

RESUMO

Thick conductive layers containing anthraquinone moieties are covalently immobilized on gold using redox grafting of the diazonium salt of anthraquinone (i.e., 9,10-dioxo-9,10-dihydroanthracene-1-diazonium tetrafluoroborate). This grafting procedure is based on using consecutive voltammetric sweeping and through this exploiting fast electron transfer reactions that are mediated by the anthraquinone redox moieties in the film. The fast film growth, which is followed by infrared reflection absorption spectroscopy, atomic force microscopy, X-ray photoelectron spectroscopy, ellipsometry, and coverage calculation, results in a mushroom-like structure. In addition to varying the number of sweeps, layer thickness control can easily be exerted through appropriate choice of the switching potential and sweep rate. It is shown that the grafting of the diazonium salt is essentially a diffusion-controlled process but also that desorption of physisorbed material during the sweeping process is essentially for avoiding blocking of the film due to clogging of the electrolyte channels in the film. In general, sweep rates higher than 0.5 V s(-1) are required if thick, porous, and conducting films should be formed.


Assuntos
Antraquinonas/química , Compostos Azo/química , Microscopia de Força Atômica , Oxirredução , Espectroscopia Fotoeletrônica
9.
Langmuir ; 28(25): 9573-82, 2012 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-22686253

RESUMO

Redox grafting of aryldiazonium salts containing redox units may be used to form exceptionally thick covalently attached conducting films, even in the micrometers range, in a controlled manner on glassy carbon and gold substrates. With the objective to investigate the mechanism of this process in detail, 1-anthraquinone (AQ) redox units were immobilized on these substrates by electroreduction of 9,10-dioxo-9,10-dihydroanthracene-1-diazonium tetrafluoroborate. Electrochemical quartz crystal microbalance was employed to follow the grafting process during a cyclic voltammetric sweep by recording the frequency change. The redox grafting is shown to have two mass gain regions/phases: an irreversible one due to the addition of AQ units to the substrate/film and a reversible one due to the association of cations from the supporting electrolyte with the AQ radical anions formed during the sweeping process. Scanning electrochemical microscopy was used to study the relationship between the conductivity of the film and the charging level of the AQ redox units in the grafted film. For that purpose, approach curves were recorded at a platinum ultramicroelectrode for AQ-containing films on gold and glassy carbon surfaces using the ferro/ferricyanide redox system as redox probe. It is concluded that the film growth has its origin in electron transfer processes occurring through the layer mediated by the redox moieties embedded in the organic film.

10.
Macromol Rapid Commun ; 32(20): 1620-6, 2011 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-21858890

RESUMO

A poly(tert-butyl acrylate) (P(tBA)) with a glycodendric endfunctionality with eight glucose moieties was synthesised in four steps via a combination of esterification, thiol-alkyne conjugation and hetero-Diels-Alder (HDA) cycloaddition. A linear glycopolymer of similar size and composition was also synthesised in order to compare the protein binding characteristics of the polymer with glycodendritic endfunctionality to the linear glycol blockcopolymer. The two amphiphilic polymers were self-assembled in water into micelles. These particles were then tested for their ability to bind to Concanavalin A (Con A). In a turbidity assay, the polymer glycodendron exhibited a significantly faster clustering rate to the lectin as compared to the linear glycopolymer. In a precipitation assay, it is found that significantly less glucose residue is required for binding per Con A for the polymer with the glycodendritic endfunctionality.


Assuntos
Alcinos/química , Concanavalina A/química , Polímeros/química , Polímeros/síntese química , Compostos de Sulfidrila/química , Acrilatos/química , Química Click , Glucose/química , Glicosilação , Micelas , Ligação Proteica , Propriedades de Superfície
11.
ACS Nano ; 15(3): 3927-3959, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33620200

RESUMO

Development of carbon neutral and sustainable energy sources should be considered as a top priority solution for the growing worldwide energy demand. Photovoltaics are a strong candidate, more specifically, organic photovoltaics (OPV), enabling the design of flexible, lightweight, semitransparent, and low-cost solar cells. However, the active layer of OPV is, for now, mainly deposited from chlorinated solvents, harmful for the environment and for human health. Active layers processed from health and environmentally friendly solvents have over recent years formed a key focus topic of research, with the creation of aqueous dispersions of conjugated polymer nanoparticles arising. These nanoparticles are formed from organic semiconductors (molecules and macromolecules) initially designed for organic solvents. The topic of nanoparticle OPV has gradually garnered more attention, up to a point where in 2018 it was identified as a "trendsetting strategy" by leaders in the international OPV research community. Hence, this review has been prepared to provide a timely roadmap of the formation and application of aqueous nanoparticle dispersions of active layer components for OPV. We provide a thorough synopsis of recent developments in both nanoprecipitation and miniemulsion for preparing photovoltaic inks, facilitating readers in acquiring a deep understanding of the crucial synthesis parameters affecting particle size, colloidal concentration, ink stability, and more. This review also showcases the experimental levers for identifying and optimizing the internal donor-acceptor morphology of the nanoparticles, featuring cutting-edge X-ray spectromicroscopy measurements reported over the past decade. The different strategies to improve the incorporation of these inks into OPV devices and to increase their efficiency (to the current record of 7.5%) are reported, in addition to critical design choices of surfactant type and the advantages of single-component vs binary nanoparticle populations. The review naturally culminates by presenting the upscaling strategies in practice for this environmentally friendly and safer production of solar cells.

12.
Langmuir ; 26(24): 18617-20, 2010 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-21080668

RESUMO

We describe the preparation, by precipitation copolymerization, of multifunctional divinylbenzene-co-pentafluorostyrene microspheres able to produce superhydrophobic surfaces or disperse in aqueous media upon annealing either in air or water, respectively. For that purpose, an amphiphilic block copolymer, polystyrene-b-poly(acrylic acid), was introduced in the initial feed composed of divinylbenzene and 2,3,4,5,6-pentafluorostyrene. As a result, fluorinated particles were obtained in which the diblock copolymer was encapsulated during the polymerization step. Upon annealing in dry air, the particles are completely hydrophobic and form superhydrophobic surfaces. On the contrary, annealing in water induces the reorientation of the PAA groups toward the particle interface, thus the particles can be dispersed in aqueous media. In addition, the presence of carboxylic acid groups at the particle interface permits us to switch the surface charge between negative and neutral depending on the environmental pH.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Microesferas , Água/química , Resinas Acrílicas/química , Concentração de Íons de Hidrogênio
13.
Nanoscale ; 12(14): 7532-7537, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32219294

RESUMO

Herein, we report the selective functionalization of nano-domains obtained by the self-assembly of a polystyrene-block-poly(vinyl benzyl azide) PS-b-PVBN3 copolymer synthesized in three steps. First, a polystyrene macro-initiator was synthesized, and then extended with vinyl benzyl chloride by nitroxide mediated polymerization to form polystyrene-block-poly(vinyl benzyl chloride) PS-b-PVBC. Nucleophilic substitution of vinyl benzyl chloride into a vinyl benzyl azide moiety is finally performed to obtain PS-b-PVBN3 which self-assembled into nano-domains of vinyl benzyl azide PVBN3. Click chemistry was then used to bind functional gold nanoparticles and poly(N-isopropylacrylamide) (PNIPAM) on PVBN3 domains due to the specific anchoring at the surface of the nanopatterned film. Atomic force microscopy (AFM) was used to observe the block copolymer self-assembly and the alignment of the gold nanoparticles at the surface of the PVBN3 nanodomains. Thorough X-ray photoelectron spectroscopy (XPS) analysis of the functional film showed evidence of the sequential grafting of nanoparticles and PNIPAM. The hybrid surface expresses thermo-responsive properties and serves as a pattern to perfectly align and control the assembly of inorganic particles at the nanoscale.

14.
Chem Commun (Camb) ; 53(11): 1876-1879, 2017 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-28111652

RESUMO

The self-assembly of 1,2,3-triazole and ionic 1,2,3-triazolium "clicked" poly(3-hexylthiophene)-b-poly(methylmethacrylate) (P3HT-b-PMMA) rod-coil diblock copolymers was used to fabricate honeycomb-patterned porous films via "breath figure" templating. The surface and inner morphologies of the honeycomb films can be both controlled by either ionizing the 1,2,3-triazole linker or changing the counter-ion nature.

15.
ACS Appl Mater Interfaces ; 9(39): 34131-34138, 2017 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-28945342

RESUMO

Understanding the degradation mechanisms in organic photovoltaics is crucial in order to develop stable organic semiconductors and robust device architectures. The rapid loss of efficiency, referred to as burn-in, is a major issue to be addressed. This study reports on the influence of the electron transport layer (ETLs) and UV light on the drop of open-circuit voltage (Voc) for P3HT:PC60BM-based devices. The results show that Voc loss is induced by the UV and, more importantly, that the ETL can amplify it, with TiOx yielding a stronger drop than ZnO. Using impedance spectroscopy (IS) and X-ray photoelectron spectroscopy (XPS), different degradation mechanisms were identified according to whether the ETL is TiOx or ZnO. For TiOx-based devices, the formation of an interface dipole was identified, resulting in a loss of the flat-band potential (Vfb) and, thus, of the Voc. For ZnO-based devices, chemical modifications of the metal oxide and active layer at the interface were detected, resulting in a doping of the active layer which impacts the Voc. This study highlights the role of the architecture and, more specifically, of the ETL in the severity of burn-in and degradation pathways.

16.
Chem Commun (Camb) ; 52(61): 9562-5, 2016 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-27387773

RESUMO

Polymer films with hierarchical micro- and nano-porosities were prepared by combining the fast solvent evaporation "Breath Figure" (BF) method, exhibiting a highly regular honeycomb micro-porous texture, with the additional nanoscale self-assembly of polylactide-block-polystyrene (PLA-b-PS) diblock copolymers, PLA being used thereafter as a sacrificial component for nano-porosity.

17.
Langmuir ; 23(13): 6879-82, 2007 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-17503861

RESUMO

We report a strategy to immobilize magnetic particles on polymer surfaces in an organized manner. Surface segregation of binary polymer blends provided surfaces with the desired chemical functions (carboxylic functions). These functional groups were demonstrated to be accessible and were thus able to react with magnetic particles functionalized with amine functions. The presence of a magnetic field during the covalent attachment step in direct surface patterning produced particle chains oriented parallel to the field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA