Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 123(14): 141301, 2019 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-31702225

RESUMO

In hierarchical models of structure formation, the first galaxies form in low-mass dark matter potential wells, probing the behavior of dark matter on kiloparsec scales. Even though these objects are below the detection threshold of current telescopes, future missions will open an observational window into this emergent world. In this Letter, we investigate how the first galaxies are assembled in a "fuzzy" dark matter (FDM) cosmology where dark matter is an ultralight ∼10^{-22} eV boson and the primordial stars are expected to form along dense dark matter filaments. Using a first-of-its-kind cosmological hydrodynamical simulation, we explore the interplay between baryonic physics and unique wavelike features inherent to FDM. In our simulation, the dark matter filaments show coherent interference patterns on the boson de Broglie scale and develop cylindrical solitonlike cores, which are unstable under gravity and collapse into kiloparsec-scale spherical solitons. Features of the dark matter distribution are largely unaffected by the baryonic feedback. On the contrary, the distributions of gas and stars, which do form along the entire filament, exhibit central cores imprinted by dark matter-a smoking gun signature of FDM.

2.
Nature ; 509(7499): 170-1, 2014 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-24805341
3.
Nat Astron ; 7(6): 731-735, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37351007

RESUMO

Early data from the James Webb Space Telescope (JWST) have revealed a bevy of high-redshift galaxy candidates with unexpectedly high stellar masses. An immediate concern is the consistency of these candidates with galaxy formation in the standard ΛCDM cosmological model, wherein the stellar mass (M⋆) of a galaxy is limited by the available baryonic reservoir of its host dark matter halo. The mass function of dark matter haloes therefore imposes an absolute upper limit on the number density n (>M⋆, z) and stellar mass density ρ⋆ (>M⋆, z) of galaxies more massive than M⋆ at any epoch z. Here I show that the most massive galaxy candidates in JWST observations at z ≈ 7-10 lie at the very edge of these limits, indicating an important unresolved issue with the properties of galaxies derived from the observations, how galaxies form at early times in ΛCDM or within this standard cosmology itself.

4.
Mon Not R Astron Soc ; 479(1): 332-340, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30581238

RESUMO

Metal-poor globular clusters (GCs) are both numerous and ancient, which indicates that they may be important contributors to ionizing radiation in the reionization era. Starting from the observed number density and stellar mass function of old GCs at z = 0, I compute the contribution of GCs to ultraviolet luminosity functions (UVLFs) in the high-redshift Universe (10 ≳ z ≳ 4). Even under absolutely minimal assumptions - no disruption of GCs and no reduction in GC stellar mass from early times to the present - GC star formation contributes non-negligibly to the UVLF at luminosities that are accessible to the Hubble Space Telescope (HST, M 1500 ≈ -17). If the stellar masses of GCs were significantly higher in the past, as is predicted by most models explaining GC chemical anomalies, then GCs dominate the UV emission from many galaxies in existing deep-field observations. On the other hand, it is difficult to reconcile observed UVLFs with models requiring stellar masses at birth that exceed present-day stellar masses by more than a factor of 5. The James Webb Space Telescope will be able to directly detect individual GCs at z ∼ 6 in essentially all bright galaxies, and many galaxies below the knee of the UVLF, for most of the scenarios considered here. The properties of a subset of high-redshift sources with -19 ≳ M 1500 ≲ -14 in HST lensing fields indicate that they may actually be GCs in formation.

5.
Mon Not R Astron Soc ; 477(1): 480-490, 2018 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-30598557

RESUMO

We present the reconstructed evolution of rest-frame ultraviolet (UV) luminosities of the most massive Milky Way dwarf spheroidal satellite galaxy, Fornax, and its five globular clusters (GCs) across redshift, based on analysis of the stellar fossil record and stellar population synthesis modelling. We find that (1) Fornax's (proto-)GCs can generate 10-100 times more UV flux than the field population, despite comprising <~ 5 per cent of the stellar mass at the relevant redshifts; (2) due to their respective surface brightnesses, it is more likely that faint, compact sources in the Hubble Frontier Fields (HFFs) are GCs hosted by faint galaxies, than faint galaxies themselves. This may significantly complicate the construction of a galaxy UV luminosity function at z > 3. (3) GC formation can introduce order-of-magnitude errors in abundance matching. We also find that some compact HFF objects are consistent with the reconstructed properties of Fornax's GCs at the same redshifts (e.g. surface brightness, star formation rate), suggesting we may have already detected proto-GCs in the early Universe. Finally, we discuss the prospects for improving the connections between local GCs and proto-GCs detected in the early Universe.

6.
Mon Not R Astron Soc ; 480(1): 1322-1332, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30573925

RESUMO

A fundamental prediction of the cold dark matter cosmology is the existence of a large number of dark subhalos around galaxies, most of which should be entirely devoid of stars. Confirming the existence of dark substructures stands among the most important empirical challenges in modern cosmology: if they are found and quantified with the mass spectrum expected, then this would close the door on a vast array of competing theories. But in order for observational programs of this kind to reach fruition, we need robust predictions. Here we explore substructure predictions for lensing using galaxy lens-like hosts at z=0.2 from the Illustris simulations both in full hydrodynamics and dark matter only. We quantify substructures more massive than ~ 109 M☉, comparable to current lensing detections derived from HST, Keck, and ALMA. The addition of full hydrodynamics reduces the overall subhalo mass function by about a factor of two. Even for the dark matter only runs, most (~85 per cent) projections through the halo of size close to an Einstein radius contain no substructures larger than 109 M☉. The fraction of empty projections through the halo rises to ~95 per cent in full physics simulations. This suggests we will likely need hundreds of strong lensing systems suitable for substructure studies, as well as predictions that include the effects of baryon physics on substructure, to properly constrain cosmological models. Fortunately, the field is poised to fulfill these requirements.

7.
Mon Not R Astron Soc ; 477(4): 4491-4498, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-30598559

RESUMO

In the local Universe, there is a strong division in the star-forming properties of low-mass galaxies, with star formation largely ubiquitous amongst the field population while satellite systems are predominantly quenched. This dichotomy implies that environmental processes play the dominant role in suppressing star formation within this low-mass regime (M ★ ~ 105.5-8 M☉). As shown by observations of the Local Volume, however, there is a non-negligible population of passive systems in the field, which challenges our understanding of quenching at low masses. By applying the satellite quenching models of Fillingham et al. (2015) to subhalo populations in the Exploring the Local Volume In Simulations suite, we investigate the role of environmental processes in quenching star formation within the nearby field. Using model parameters that reproduce the satellite quenched fraction in the Local Group, we predict a quenched fraction - due solely to environmental effects - of ~0.52 ± 0.26 within 1 < R/R vir < 2 of the Milky Way and M31. This is in good agreement with current observations of the Local Volume and suggests that the majority of the passive field systems observed at these distances are quenched via environmental mechanisms. Beyond 2R vir, however, dwarf galaxy quenching becomes difficult to explain through an interaction with either the Milky Way or M31, such that more isolated, field dwarfs may be self-quenched as a result of star-formation feedback.

8.
Mon Not R Astron Soc ; 481(1): 688-702, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30573926

RESUMO

Young massive star clusters spanning ~104-108M⊙ in mass have been observed to have similar surface brightness profiles. We show that recent hydrodynamical simulations of star cluster formation have also produced star clusters with this structure. We argue analytically that this type of mass distribution arises naturally in the relaxation from a hierarchically clustered distribution of stars into a monolithic star cluster through hierarchical merging. We show that initial profiles of finite maximum density will tend to produce successively shallower power-law profiles under hierarchical merging, owing to certain conservation constraints on the phase-space distribution. We perform N-body simulations of a pairwise merger of model star clusters and find that mergers readily produce the shallow surface brightness profiles observed in young massive clusters. Finally, we simulate the relaxation of a hierarchically clustered mass distribution constructed from an idealized fragmentation model. Assuming only power-law spatial and kinematic scaling relations, these numerical experiments are able to reproduce the surface density profiles of observed young massive star clusters. Thus, we bolster the physical motivation for the structure of young massive clusters within the paradigm of hierarchical star formation. This could have important implications for the structure and dynamics of nascent globular clusters.

9.
Mon Not R Astron Soc ; 477(3): 2886-2899, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30598558

RESUMO

We contrast predictions for the high-redshift galaxy population and reionization history between cold dark matter (CDM) and an alternative self-interacting dark matter model based on the recently developed ETHOS framework that alleviates the small-scale CDM challenges within the Local Group. We perform the highest resolution hydrodynamical cosmological simulations (a 36 Mpc3 volume with gas cell mass of ∼ 105 M⊙ and minimum gas softening of ∼ 180 pc) within ETHOS to date - plus a CDM counterpart - to quantify the abundance of galaxies at high redshift and their impact on reionization. We find that ETHOS predicts galaxies with higher ultraviolet (UV) luminosities than their CDM counterparts and a faster build-up of the faint end of the UV luminosity function. These effects, however, make the optical depth to reionization less sensitive to the power spectrum cut-off: the ETHOS model differs from the CDM τ value by only 10 per cent and is consistent with Planck limits if the effective escape fraction of UV photons is 0.1-0.5. We conclude that current observations of high-redshift luminosity functions cannot differentiate between ETHOS and CDM models, but deep James Webb Space Telescope surveys of strongly lensed, inherently faint galaxies have the potential to test non-CDM models that offer attractive solutions to CDM's Local Group problems.

10.
Mon Not R Astron Soc ; 480(1): 652-668, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30581239

RESUMO

The oldest stars in the Milky Way (MW) bear imprints of the Galaxy's early assembly history. We use FIRE cosmological zoom-in simulations of three MW-mass disc galaxies to study the spatial distribution, chemistry, and kinematics of the oldest surviving stars (z form ≳ 5) in MW-like galaxies. We predict the oldest stars to be less centrally concentrated at z = 0 than stars formed at later times as a result of two processes. First, the majority of the oldest stars are not formed in situ but are accreted during hierarchical assembly. These ex situ stars are deposited on dispersion-supported, halo-like orbits but dominate over old stars formed in situ in the solar neighbourhood, and in some simulations, even in the galactic centre. Secondly, old stars formed in situ are driven outwards by bursty star formation and energetic feedback processes that create a time-varying gravitational potential at z ≳ 2, similar to the process that creates dark matter cores and expands stellar orbits in bursty dwarf galaxies. The total fraction of stars that are ancient is more than an order of magnitude higher for sight lines away from the bulge and inner halo than for inward-looking sight lines. Although the task of identifying specific stars as ancient remains challenging, we anticipate that million-star spectral surveys and photometric surveys targeting metal-poor stars already include hundreds of stars formed before z = 5. We predict most of these targets to have higher metallicity (-3 < [Fe/H] < -2) than the most extreme metal-poor stars.

11.
Mon Not R Astron Soc ; 480(2): 1666-1675, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30581240

RESUMO

Using high-resolution simulations from the FIRE-2 (Feedback In Realistic Environments) project, we study the effects of discreteness in stellar feedback processes on the evolution of galaxies and the properties of the interstellar medium (ISM). We specifically consider the discretization of supernovae (SNe), including hypernovae (HNe), and sampling the initial mass function (IMF). We study these processes in cosmological simulations of dwarf galaxies with z = 0 stellar masses M * ~ 104-3 × 106 M⊙ (halo masses ~109-1010 M⊙). We show that the discrete nature of individual SNe (as opposed to a model in which their energy/momentum deposition is continuous overtime, similar to stellar winds) is crucial in generating a reasonable ISM structure and galactic winds and in regulating dwarf stellar masses. However, once SNe are discretized, accounting for the effects of IMF sampling on continuous mechanisms such as radiative feedback and stellar mass-loss (as opposed to adopting IMF-averaged rates) has weak effects on galaxy-scale properties. We also consider the effects of rare HNe events with energies ~1053 erg. The effects of HNe are similar to the effects of clustered explosions of SNe - which are already captured in our default simulation setup - and do not quench star formation (provided that the HNe do not dominate the total SNe energy budget), which suggests that HNe yield products should be observable in ultra-faint dwarfs today.

12.
Mon Not R Astron Soc ; 481(3): 4133-4157, 2018 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-30598560

RESUMO

We use hydrodynamic cosmological zoom-in simulations from the Feedback in Realistic Environments project to explore the morphologies and kinematics of 15 Milky Way (MW)-mass galaxies. Our sample ranges from compact, bulge-dominated systems with 90 per cent of their stellar mass within 2.5 kpc to well-ordered discs that reach ≳15 kpc. The gas in our galaxies always forms a thin, rotation-supported disc at z = 0, with sizes primarily determined by the gas mass. For stars, we quantify kinematics and morphology both via the fraction of stars on disc-like orbits and with the radial extent of the stellar disc. In this mass range, stellar morphology and kinematics are poorly correlated with the properties of the halo available from dark matter-only simulations (halo merger history, spin, or formation time). They more strongly correlate with the gaseous histories of the galaxies: those that maintain a high gas mass in the disc after z ~ 1 develop well-ordered stellar discs. The best predictor of morphology we identify is the spin of the gas in the halo at the time the galaxy formed 1/2 of its stars (i.e. the gas that builds the galaxy). High-z mergers, before a hot halo emerges, produce some of the most massive bulges in the sample (from compact discs in gas-rich mergers), while later-forming bulges typically originate from internal processes, as satellites are stripped of gas before the galaxies merge. Moreover, most stars in z = 0 MW-mass galaxies (even z = 0 bulge stars) form in a disc: ≳60-90 per cent of stars begin their lives rotationally supported.

13.
Mon Not R Astron Soc ; 477(2): 1536-1548, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-30713356

RESUMO

The shape of a galaxy's spatially unresolved, globally integrated 21-cm emission line depends on its internal gas kinematics: galaxies with rotationally supported gas discs produce double-horned profiles with steep wings, while galaxies with dispersion-supported gas produce Gaussian-like profiles with sloped wings. Using mock observations of simulated galaxies from the FIRE project, we show that one can therefore constrain a galaxy's gas kinematics from its unresolved 21-cm line profile. In particular, we find that the kurtosis of the 21-cm line increases with decreasing V/σ and that this trend is robust across a wide range of masses, signal-to-noise ratios, and inclinations. We then quantify the shapes of 21-cm line profiles from a morphologically unbiased sample of ~2000 low-redshift, HI-detected galaxies with Mstar = 107-11 M☉ and compare to the simulated galaxies. At Mstar ≳ 1010 M☉, both the observed and simulated galaxies produce double-horned profiles with low kurtosis and steep wings, consistent with rotationally supported discs. Both the observed and simulated line profiles become more Gaussian like (higher kurtosis and less-steep wings) at lower masses, indicating increased dispersion support. However, the simulated galaxies transition from rotational to dispersion support more strongly: at Mstar 108-10 M, most of the simulations produce more Gaussian-like profiles than typical observed galaxies with similar mass, indicating that gas in the low-mass simulated galaxies is, on average, overly dispersion supported. Most of the lower-mass-simulated galaxies also have somewhat lower gas fractions than the median of the observed population. The simulations nevertheless reproduce the observed line-width baryonic Tully-Fisher relation, which is insensitive to rotational versus dispersion support.

14.
Mon Not R Astron Soc ; 472(3): 3120-3130, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30546160

RESUMO

I present a simple phenomenological model for the observed linear scaling of the stellar mass in old globular clusters (GCs) with z = 0 halo mass in which the stellar mass in GCs scales linearly with progenitor halo mass at z = 6 above a minimum halo mass for GC formation. This model reproduces the observed M GCs-M halo relation at z = 0 and results in a prediction for the minimum halo mass at z = 6 required for hosting one GC: M min(z = 6) = 1.07 × 109 M⊙. Translated to z = 0, the mean threshold mass is M halo(z = 0) ≈ 2 × 1010 M⊙. I explore the observability of GCs in the reionization era and their contribution to cosmic reionization, both of which depend sensitively on the (unknown) ratio of GC birth mass to present-day stellar mass, ξ. Based on current detections of z ≳ 6 objects with M 1500<-17, values of ξ > 10 are strongly disfavoured; this, in turn, has potentially important implications for GC formation scenarios. Even for low values of ξ, some observed high-z galaxies may actually be GCs, complicating estimates of reionization-era galaxy ultraviolet luminosity functions and constraints on dark matter models. GCs are likely important reionization sources if 5 ≲ ξ ≲ 10. I also explore predictions for the fraction of accreted versus in situ GCs in the local Universe and for descendants of systems at the halo mass threshold of GC formation (dwarf galaxies). An appealing feature of the model presented here is the ability to make predictions for GC properties based solely on dark matter halo merger trees.

15.
Mon Not R Astron Soc ; 471(4): 4559-4570, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28983129

RESUMO

We present a theoretical analysis of some unexplored aspects of relaxed Bose-Einstein condensate dark matter (BECDM) haloes. This type of ultralight bosonic scalar field dark matter is a viable alternative to the standard cold dark matter (CDM) paradigm, as it makes the same large-scale predictions as CDM and potentially overcomes CDM's small-scale problems via a galaxy-scale de Broglie wavelength. We simulate BECDM halo formation through mergers, evolved under the Schrödinger-Poisson equations. The formed haloes consist of a soliton core supported against gravitational collapse by the quantum pressure tensor and an asymptotic r-3 NFW-like profile. We find a fundamental relation of the core-to-halo mass with the dimensionless invariant Ξ ≡ |E|/M3/(Gm/h)2 or Mc/M ≃ 2.6Ξ1/3, linking the soliton to global halo properties. For r ≥ 3.5 rc core radii, we find equipartition between potential, classical kinetic and quantum gradient energies. The haloes also exhibit a conspicuous turbulent behaviour driven by the continuous reconnection of vortex lines due to wave interference. We analyse the turbulence 1D velocity power spectrum and find a k-1.1 power law. This suggests that the vorticity in BECDM haloes is homogeneous, similar to thermally-driven counterflow BEC systems from condensed matter physics, in contrast to a k-5/3 Kolmogorov power law seen in mechanically-driven quantum systems. The mode where the power spectrum peaks is approximately the soliton width, implying that the soliton-sized granules carry most of the turbulent energy in BECDM haloes.

16.
Mon Not R Astron Soc ; 472(4): 4786-4796, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-30705467

RESUMO

We use a suite of high-resolution cosmological dwarf galaxy simulations to test the accuracy of commonly used mass estimators from Walker et al. (2009) and Wolf et al. (2010), both of which depend on the observed line-of-sight velocity dispersion and the 2D half-light radius of the galaxy, Re . The simulations are part of the Feedback in Realistic Environments (fire) project and include 12 systems with stellar masses spanning 105­107M⊙ that have structural and kinematic properties similar to those of observed dispersion-supported dwarfs. Both estimators are found to be quite accurate: MWolf∕Mtrue=0.98−0.12+0.19 and MWalker∕Mtrue=1.07−0.15+0.21, with errors reflecting the 68 per cent range over all simulations. The excellent performance of these estimators is remarkable given that they each assume spherical symmetry, a supposition that is broken in our simulated galaxies. Though our dwarfs have negligible rotation support, their 3D stellar distributions are flattened, with short-to-long axis ratios c/a ≃ 0.4­0.7. The median accuracy of the estimators shows no trend with asphericity. Our simulated galaxies have sphericalized stellar profiles in 3D that follow a nearly universal form, one that transitions from a core at small radius to a steep fall-off ∝r−42 at large r; they are well fit by Sérsic profiles in projection. We find that the most important empirical quantity affecting mass estimator accuracy is Re . Determining Re by an analytic fit to the surface density profile produces a better estimated mass than if the half-light radius is determined via direct summation.

17.
Mon Not R Astron Soc ; 472(3): 2945-2954, 2017 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-30595610

RESUMO

We compare a suite of four simulated dwarf galaxies formed in 1010 M☉ haloes of collisionless cold dark matter (CDM) with galaxies simulated in the same haloes with an identical galaxy formation model but a non-zero cross-section for DM self-interactions. These cosmological zoom-in simulations are part of the Feedback In Realistic Environments (fire) project and utilize the fire-2 model for hydrodynamics and galaxy formation physics. We find the stellar masses of the galaxies formed in self-interacting dark matter (SIDM) with σ/m = 1 cm2 g-1 are very similar to those in CDM (spanning M ★ ≈ 105.7-7.0 M☉) and all runs lie on a similar stellar mass-size relation. The logarithmic DM density slope (α = d log ρ/d log r) in the central 250-500 pc remains steeper than α = -0.8 for the CDM-Hydro simulations with stellar mass M ★ ~ 106.6 M☉ and core-like in the most massive galaxy. In contrast, every SIDM hydrodynamic simulation yields a flatter profile, with α > -0.4. Moreover, the central density profiles predicted in SIDM runs without baryons are similar to the SIDM runs that include fire-2 baryonic physics. Thus, SIDM appears to be much more robust to the inclusion of (potentially uncertain) baryonic physics than CDM on this mass scale, suggesting that SIDM will be easier to falsify than CDM using low-mass galaxies. Our fire simulations predict that galaxies less massive than M ★ ≲ 3 × 106 M☉ provide potentially ideal targets for discriminating models, with SIDM producing substantial cores in such tiny galaxies and CDM producing cusps.

18.
Science ; 359(6375): 520-521, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29420279
19.
Phys Rev Lett ; 93(2): 021301, 2004 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-15323896

RESUMO

We study whether gravitational scattering of halo dark matter particles by subhalos can connect two seemingly independent problems: the abundance of subhalos in dark matter halos and the cuspiness of the halos' inner density profiles. Our numerical experiments indicate that subhalos can cause the collisionless dark matter particles in the centers of main halos to diffuse. Combined with tidal mass loss of the subhalos, this process introduces significant scatter in the inner density profiles and offers an explanation for the range of profiles seen in both observations and cosmological simulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA