Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Glia ; 69(6): 1583-1604, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33620118

RESUMO

Microgliosis is a prominent pathological feature in many neurological diseases including multiple sclerosis (MS), a progressive auto-immune demyelinating disorder. The precise role of microglia, parenchymal central nervous system (CNS) macrophages, during demyelination, and the relative contributions of peripheral macrophages are incompletely understood. Classical markers used to identify microglia do not reliably discriminate between microglia and peripheral macrophages, confounding analyses. Here, we use a genetic fate mapping strategy to identify microglia as predominant responders and key effectors of demyelination in the cuprizone (CUP) model. Colony-stimulating factor 1 (CSF1), also known as macrophage colony-stimulating factor (M-CSF) - a secreted cytokine that regulates microglia development and survival-is upregulated in demyelinated white matter lesions. Depletion of microglia with the CSF1R inhibitor PLX3397 greatly abrogates the demyelination, loss of oligodendrocytes, and reactive astrocytosis that results from CUP treatment. Electron microscopy (EM) and serial block face imaging show myelin sheaths remain intact in CUP treated mice depleted of microglia. However, these CUP-damaged myelin sheaths are lost and robustly phagocytosed upon-repopulation of microglia. Direct injection of CSF1 into CNS white matter induces focal microgliosis and demyelination indicating active CSF1 signaling can promote demyelination. Finally, mice defective in adopting a toxic astrocyte phenotype that is driven by microglia nevertheless demyelinate normally upon CUP treatment implicating microglia rather than astrocytes as the primary drivers of CUP-mediated demyelination. Together, these studies indicate activated microglia are required for and can drive demyelination directly and implicate CSF1 signaling in these events.


Assuntos
Doenças Desmielinizantes , Microglia , Animais , Cuprizona/toxicidade , Doenças Desmielinizantes/induzido quimicamente , Modelos Animais de Doenças , Macrófagos , Camundongos , Receptores de Fator Estimulador de Colônias , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Transdução de Sinais
2.
Mol Pharm ; 18(8): 3158-3170, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34292741

RESUMO

Cell-free hemoglobin (Hb) is a driver of disease progression in conditions with intravascular or localized hemolysis. Genetic and acquired anemias or emergency medical conditions such as aneurysmal subarachnoid hemorrhage involve tissue Hb exposure. Haptoglobin (Hp) captures Hb in an irreversible protein complex and prevents its pathophysiological contributions to vascular nitric oxide depletion and tissue oxidation. Preclinical proof-of-concept studies suggest that human plasma-derived Hp is a promising therapeutic candidate for several Hb-driven diseases. Optimizing the efficacy and safety of Hb-targeting biotherapeutics may require structural and functional modifications for specific indications. Improved Hp variants could be designed to achieve the desired tissue distribution, metabolism, and elimination to target hemolytic disease states effectively. However, it is critical to ensure that these modifications maintain the function of Hp. Using transient mammalian gene expression of Hp combined with co-transfection of the pro-haptoglobin processing protease C1r-LP, we established a platform for generating recombinant Hp-variants. We designed an Hpß-scaffold, which was expressed in this system at high levels as a monomeric unit (mini-Hp) while maintaining the key protective functions of Hp. We then used this Hpß-scaffold as the basis to develop an initial proof-of-concept Hp fusion protein using human serum albumin as the fusion partner. Next, a hemopexin-Hp fusion protein with bispecific heme and Hb detoxification capacity was generated. Further, we developed a Hb scavenger devoid of CD163 scavenger receptor binding. The functions of these proteins were then characterized for Hb and heme-binding, binding of the Hp-Hb complexes with the clearance receptor CD163, antioxidant properties, and vascular nitric oxide sparing capacity. Our platform is designed to support the generation of innovative Hb scavenger biotherapeutics with novel modes of action and potentially improved formulation characteristics, function, and pharmacokinetics.


Assuntos
Produtos Biológicos/metabolismo , Desenho de Fármacos/métodos , Haptoglobinas/metabolismo , Hemoglobinas/metabolismo , Hemopexina/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Artéria Basilar/efeitos dos fármacos , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Células HEK293 , Haptoglobinas/química , Haptoglobinas/genética , Heme/metabolismo , Hemoglobinas/química , Hemólise , Hemopexina/química , Hemopexina/genética , Humanos , Ligação Proteica , Receptores de Superfície Celular/metabolismo , Receptores Depuradores/metabolismo , Proteínas Recombinantes de Fusão/genética , Albumina Sérica Humana/química , Albumina Sérica Humana/genética , Albumina Sérica Humana/metabolismo , Suínos , Transfecção , Vasodilatação/efeitos dos fármacos
3.
J Clin Med ; 11(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35160081

RESUMO

People living with sickle cell disease (SCD) face intermittent acute pain episodes due to vaso-occlusion primarily treated palliatively with opioids. Hemolysis of sickle erythrocytes promotes release of heme, which activates inflammatory cell adhesion proteins on endothelial cells and circulating cells, promoting vaso-occlusion. In this study, plasma-derived hemopexin inhibited heme-mediated cellular externalization of P-selectin and von Willebrand factor, and expression of IL-8, VCAM-1, and heme oxygenase-1 in cultured endothelial cells in a dose-responsive manner. In the Townes SCD mouse model, intravenous injection of free hemoglobin induced vascular stasis (vaso-occlusion) in nearly 40% of subcutaneous blood vessels visualized in a dorsal skin-fold chamber. Hemopexin administered intravenously prevented or relieved stasis in a dose-dependent manner. Hemopexin showed parallel activity in relieving vascular stasis induced by hypoxia-reoxygenation. Repeated IV administration of hemopexin was well tolerated in rats and non-human primates with no adverse findings that could be attributed to human hemopexin. Hemopexin had a half-life in wild-type mice, rats, and non-human primates of 80-102 h, whereas a reduced half-life of hemopexin in Townes SCD mice was observed due to ongoing hemolysis. These data have led to a Phase 1 clinical trial of hemopexin in adults with SCD, which is currently ongoing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA