Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(7): 3502-3508, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32015123

RESUMO

Accurate analysis of blood concentration and circulation half-life is an important consideration for any intravenously administered agent in preclinical development or for therapeutic application. However, the currently available tools to measure these parameters are laborious, expensive, and inefficient for handling multiple samples from complex multivariable experiments. Here we describe a robust high-throughput quantitative microscopy-based method to measure the blood concentration and circulation half-life of any fluorescently labeled agent using only a small (2 µL) amount of blood volume, enabling additional end-point measurements to be assessed in the same subject. To validate this method, we demonstrate its use to measure the circulation half-life in mice of two types of fluorescently labeled polymeric nanoparticles of different sizes and surface chemistries and of a much smaller fluorescently labeled monoclonal antibody. Furthermore, we demonstrate the improved accuracy of this method compared to previously described methods.


Assuntos
Monitoramento de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Microscopia/métodos , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/química , Animais , Feminino , Meia-Vida , Humanos , Injeções Intravenosas , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/química
2.
Am J Transplant ; 21(1): 161-173, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32627324

RESUMO

Thousands of kidneys from higher-risk donors are discarded annually because of the increased likelihood of complications posttransplant. Given the severe organ shortage, there is a critical need to improve utilization of these organs. To this end, normothermic machine perfusion (NMP) has emerged as a platform for ex vivo assessment and potential repair of marginal organs. In a recent study of 8 transplant-declined human kidneys on NMP, we discovered microvascular obstructions that impaired microvascular blood flow. However, the nature and physiologic impact of these lesions were unknown. Here, in a study of 39 human kidneys, we have identified that prolonged cold storage of human kidneys induces accumulation of fibrinogen within tubular epithelium. Restoration of normoxic conditions-either ex vivo during NMP or in vivo following transplant-triggered intravascular release of fibrinogen correlating with red blood cell aggregation and microvascular plugging. Combined delivery of plasminogen and tissue plasminogen activator during NMP lysed the plugs leading to a significant reduction in markers of renal injury, improvement in indicators of renal function, and improved delivery of vascular-targeted nanoparticles. Our study suggests a new mechanism of cold storage injury in marginal organs and provides a simple treatment with immediate translational potential.


Assuntos
Transplante de Rim , Preservação de Órgãos , Humanos , Rim , Transplante de Rim/efeitos adversos , Perfusão , Ativador de Plasminogênio Tecidual
3.
Biomacromolecules ; 18(11): 3802-3811, 2017 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-28976740

RESUMO

Vascular grafts that can support total replacement and maintenance by the body of the injured vessel would improve outcomes of major surgical reconstructions. Building scaffolds using components of the native vessel can encourage biological recognition by native cells as well as mimic mechanical characteristics of the native vessel. Evidence is emerging that incorporating predetermined building-blocks into a tissue engineering scaffold may oversimplify the environment and ignore critical structures and binding sites essential to development at the implant. We propose the development of a 3D-printable and degradable hybrid scaffold by combining polyethylene glycol (PEG)acrylate and homogenized pericardium matrix (HPM) to achieve appropriate biological environment as well as structural support. It was hypothesized that incorporation of HPM into PEG hydrogels would affect modulus of the scaffold and that the modulus and biological component would reduce the inflammatory signals produced from arriving macrophages and nearby endothelial cells. HPM was found to provide a number of tissue specific structural proteins including collagen, fibronectin, and glycosaminoglycans. HPM and PEGacrylate formed a hybrid hydrogel with significantly distinct modulus depending on concentration of either component, which resulted in scaffolds with stiffness between 0.5 and 20 kPa. The formed hybrid hydrogel was confirmed through a reduction in primary amines post-cross-linking. Using these hybrid scaffolds, rat bone marrow derived macrophages developed an M2 phenotype in response to low amounts (0.03%, w/v) of HPM in culture but responded with inflammatory phenotypes to high concentrations (0.3%, w/v). When cultured together with endothelial cells, both M1 and M2 macrophages were detected, along with a combination of both inflammatory and healing cytokines. However, the expression of inflammatory cytokines TNFα and IL1ß was significantly (p < 0.05) lower with hybrid hydrogels compared to single component PEG or HPM hydrogels. This reduction in inflammatory cytokines could impact the healing environment that persists at the implantation site. Finally, using this developed hybrid hydrogel, models of neonatal vasculature were manufactured using digital light projection (DLP) 3D printing. The structural control achieved with this novel biomaterial suggests a promising new tool in vascular graft development and research, with potential for complex structures for use in congenital heart defect reconstruction.


Assuntos
Materiais Biocompatíveis/administração & dosagem , Hidrogéis/administração & dosagem , Neovascularização Fisiológica/efeitos dos fármacos , Pericárdio/efeitos dos fármacos , Engenharia Tecidual , Animais , Materiais Biocompatíveis/química , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/crescimento & desenvolvimento , Células Cultivadas , Colágeno/química , Células Endoteliais/efeitos dos fármacos , Humanos , Hidrogéis/química , Pericárdio/crescimento & desenvolvimento , Polietilenoglicóis/química , Impressão Tridimensional , Ratos , Alicerces Teciduais/química , Cicatrização/efeitos dos fármacos
4.
Tissue Eng Part A ; 30(7-8): 272-286, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38149606

RESUMO

Tissue engineering and wound-healing interventions are often designed for use in diseased and inflamed environments. In this space, endothelial cells (ECs) are crucial regulators of inflammation and healing, as they are the primary contact for recruitment of immune cells, as well as production of proinflammatory cytokines, which can stimulate or reduce inflammation. Alternatively, proliferation and spreading of ECs result in the formation of new vascular tissue or repair of damaged tissue, both critical for wound healing. Targeting ECs with specific nucleic acids could reduce unwanted inflammation or promote tissue regeneration as needed, which are two large issues involved in many regenerative medicine goals. Polymeric delivery systems are tools that can control the delivery of nucleic acids and prolong their effects. This review describes the use of polymeric vehicles for the delivery of nucleic acids to ECs for tissue engineering. Impact statement Tissue engineering is a rapidly growing field that has the potential to resolve many disease states and improve the quality of life of patients. In some applications, tissue-engineered strategies or constructs are developed to rebuild spaces damaged by disease or degeneration. To rebuild the native tissue, these constructs may need to interact with unwanted immune activity and cells. Various immune cells are often the focus of therapies as they are critical players in the inflammatory response; however, endothelial cells are also an extremely important and promising target in these cases. In addition, controlled delivery of specific-acting molecules, such as nucleic acids, is of growing interest for the regeneration and health of a variety of different tissues. It is important to understand what has been done and the potential of these targets and therapeutics for future investigation and advancements in tissue engineering.


Assuntos
Células Endoteliais , Qualidade de Vida , Humanos , Inflamação , Medicina Regenerativa , Engenharia Tecidual , Cicatrização
5.
Nat Commun ; 15(1): 4247, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762483

RESUMO

The in vivo efficacy of polymeric nanoparticles (NPs) is dependent on their pharmacokinetics, including time in circulation and tissue tropism. Here we explore the structure-function relationships guiding physiological fate of a library of poly(amine-co-ester) (PACE) NPs with different compositions and surface properties. We find that circulation half-life as well as tissue and cell-type tropism is dependent on polymer chemistry, vehicle characteristics, dosing, and strategic co-administration of distribution modifiers, suggesting that physiological fate can be optimized by adjusting these parameters. Our high-throughput quantitative microscopy-based platform to measure the concentration of nanomedicines in the blood combined with detailed biodistribution assessments and pharmacokinetic modeling provides valuable insight into the dynamic in vivo behavior of these polymer NPs. Our results suggest that PACE NPs-and perhaps other NPs-can be designed with tunable properties to achieve desired tissue tropism for the in vivo delivery of nucleic acid therapeutics. These findings can guide the rational design of more effective nucleic acid delivery vehicles for in vivo applications.


Assuntos
Macrófagos , Nanopartículas , Polímeros , Animais , Nanopartículas/química , Distribuição Tecidual , Camundongos , Polímeros/química , Macrófagos/metabolismo , Humanos , Feminino , Sistemas de Liberação de Medicamentos , Camundongos Endogâmicos C57BL
6.
Biomaterials ; 287: 121676, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35849999

RESUMO

Poly(ethylene glycol) (PEG) is widely employed for passivating nanoparticle (NP) surfaces to prolong blood circulation and enhance localization of NPs to target tissue. However, the immune response of PEGylated NPs-including anti-PEG antibody generation, accelerated blood clearance (ABC), and loss of delivery efficacy-is of some concern, especially for treatments that require repeat administrations. Although polyglycerol (PG), which has the same ethylene oxide backbone as PEG, has received attention as an alternative to PEG for NP coatings, the pharmacokinetic and immunogenic impact of PG has not been studied systematically. Here, linear PG, hyperbranched PG (hPG), and PEG-coated polylactide (PLA) NPs with varying surface densities were studied in parallel to determine the pharmacokinetics and immunogenicity of PG and hPG grafting, in comparison with PEG. We found that linear PG imparted the NPs a stealth property comparable to PEG, while hPG-grafted NPs needed a higher surface density to achieve the same pharmacokinetic impact. While linear PG-grafted NPs induced anti-PEG antibody production in mice, they exhibited minimal accelerated blood clearance (ABC) effects due to the poor interaction with anti-PEG immunoglobulin M (IgM). Further, we observed no anti-polymer IgM responses or ABC effects for hPG-grafted NPs.

7.
Adv Drug Deliv Rev ; 156: 119-132, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32585159

RESUMO

Polymeric vehicles are versatile tools for therapeutic gene delivery. Many polymers-when assembled with nucleic acids into vehicles-can protect the cargo from degradation and clearance in vivo, and facilitate its transport into intracellular compartments. Design options in polymer synthesis yield a comprehensive range of molecules and resulting vehicle formulations. These properties can be manipulated to achieve stronger association with nucleic acid cargo and cells, improved endosomal escape, or sustained delivery depending on the application. Here, we describe current approaches for polymer use and related strategies for gene delivery in preclinical and clinical applications. Polymer vehicles delivering genetic material have already achieved significant therapeutic endpoints in vitro and in animal models. From our perspective, with preclincal assays that better mimic the in vivo environment, improved strategies for target specificity, and scalable techniques for polymer synthesis, the impact of this therapeutic approach will continue to expand.


Assuntos
Técnicas de Transferência de Genes , Ácidos Nucleicos/administração & dosagem , Polímeros/administração & dosagem , Animais , Humanos
8.
Bioeng Transl Med ; 5(2): e10154, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32440561

RESUMO

Endothelial cells play a central role in the process of inflammation. Their biologic relevance, as well as their accessibility to IV injected therapeutics, make them a strong candidate for treatment with molecularly-targeted nanomedicines. Typically, the properties of targeted nanomedicines are first optimized in vitro in cell culture and then in vivo in rodent models. While cultured cells are readily available for study, results obtained from isolated cells can lack relevance to more complex in vivo environments. On the other hand, the quantitative assays needed to determine the impact of nanoparticle design on targeting efficacy are difficult to perform in animal models. Moreover, results from animal models often translate poorly to human systems. To address the need for an improved testing platform, we developed an isolated vessel perfusion system to enable dynamic and quantitative study of vascular-targeted nanomedicines in readily obtainable human vessels isolated from umbilical cords or placenta. We show that this platform technology enables the evaluation of parameters that are critical to targeting efficacy (including flow rate, selection of targeting molecule, and temperature). Furthermore, biologic replicates can be easily produced by evaluating multiple vessel segments from the same human donor in independent, modular chambers. The chambers can also be adapted to house vessels of a variety of sizes, allowing for the subsequent study of vessel segments in vivo following transplantation into immunodeficient mice. We believe this perfusion system can help to address long-standing issues in endothelial targeted nanomedicines and thereby enable more effective clinical translation.

10.
J Biomed Mater Res A ; 107(3): 494-504, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30565857

RESUMO

Degradable materials that can support cell infiltration and remodeling are the basis of tissue engineered approaches to vascular repair. In addition, to replace or close a large area of the vasculature, a patch material or scaffold must also withstand high pressure over time. Extracellular matrix-based (ECM-based) scaffolds offer a biological substrate with environmental cues that can support the formation of appropriate vascular tissue. However, scaffolds made from pure natural materials can degrade rapidly, resulting in reduced mechanical integrity of the implant and possible chronic inflammation in the site. A hybrid biomaterial, combining the matrix-dense tissue pericardium with a layer of the degradable polymer poly(propylene fumarate) (PPF), is suited to withstand rapid enzymatic degradation and control the presentation of an unaltered natural tissue matrix for remodeling activity. In this study, we show that the polymer reinforced hybrid supports cellular infiltration, but has fewer macrophages in the vicinity of the implant after 6 weeks in vivo than an untreated tissue control in both athymic and immunocompetent rat models. This result is supported by changes seen in other inflammatory cell populations. Based on significant differences in the inflammatory response to untreated pericardium and PPF-reinforced pericardium, we conclude that the polymer reinforcement layer can be used as a tool to leverage presentation of the ECM molecules in ECM-based scaffolds. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 494-504, 2019.


Assuntos
Materiais Revestidos Biocompatíveis , Matriz Extracelular/química , Fumaratos , Pericardite , Pericárdio , Polipropilenos , Alicerces Teciduais/química , Animais , Doença Crônica , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Fumaratos/química , Fumaratos/farmacologia , Inflamação/metabolismo , Inflamação/patologia , Inflamação/terapia , Masculino , Pericardite/metabolismo , Pericardite/patologia , Pericardite/terapia , Pericárdio/metabolismo , Pericárdio/patologia , Polipropilenos/química , Polipropilenos/farmacologia , Ratos , Ratos Nus , Ratos Sprague-Dawley
11.
JCI Insight ; 4(20)2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31527312

RESUMO

Tissue engineering may address organ shortages currently limiting clinical transplantation. Off-the-shelf engineered vascularized organs will likely use allogeneic endothelial cells (ECs) to construct microvessels required for graft perfusion. Vasculogenic ECs can be differentiated from committed progenitors (human endothelial colony-forming cells or HECFCs) without risk of mutation or teratoma formation associated with reprogrammed stem cells. Like other ECs, these cells can express both class I and class II major histocompatibility complex (MHC) molecules, bind donor-specific antibody (DSA), activate alloreactive T effector memory cells, and initiate rejection in the absence of donor leukocytes. CRISPR/Cas9-mediated dual ablation of ß2-microglobulin and class II transactivator (CIITA) in HECFC-derived ECs eliminates both class I and II MHC expression while retaining EC functions and vasculogenic potential. Importantly, dually ablated ECs no longer bind human DSA or activate allogeneic CD4+ effector memory T cells and are resistant to killing by CD8+ alloreactive cytotoxic T lymphocytes in vitro and in vivo. Despite absent class I MHC molecules, these ECs do not activate or elicit cytotoxic activity from allogeneic natural killer cells. These data suggest that HECFC-derived ECs lacking MHC molecule expression can be utilized for engineering vascularized grafts that evade allorejection.


Assuntos
Aloenxertos/imunologia , Células Endoteliais/imunologia , Rejeição de Enxerto/prevenção & controle , Proteínas Nucleares/genética , Engenharia Tecidual/métodos , Transativadores/genética , Microglobulina beta-2/genética , Aloenxertos/irrigação sanguínea , Aloenxertos/provisão & distribuição , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Sistemas CRISPR-Cas/genética , Diferenciação Celular , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Progenitoras Endoteliais , Feminino , Sangue Fetal/citologia , Técnicas de Inativação de Genes , Rejeição de Enxerto/sangue , Rejeição de Enxerto/imunologia , Voluntários Saudáveis , Humanos , Isoanticorpos/imunologia , Células Matadoras Naturais/imunologia , Ativação Linfocitária/genética , Camundongos , Microvasos/citologia , Microvasos/imunologia , Microvasos/transplante , Proteínas Nucleares/imunologia , Transplante de Órgãos/efeitos adversos , Transplante de Órgãos/métodos , Cultura Primária de Células , Transativadores/imunologia , Microglobulina beta-2/imunologia
12.
J Control Release ; 304: 259-267, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31054286

RESUMO

Degradable poly(amine-co-ester) (PACE) terpolymers hold tremendous promise for siRNA delivery because these materials can be formulated into delivery vehicles with highly efficient siRNA encapsulation, providing effective knockdown with low toxicity. Here, we demonstrate that PACE nanoparticles (NPs) provide substantial protein knockdown in human embryonic kidney cells (HEK293) and hard-to-transfect primary human umbilical vein endothelial cells (HUVECs). After intravenous administration, NPs of solid PACE (sPACE)-synthesized with high monomer content of a hydrophobic lactone-accumulated in the liver and, to a lesser extent, in other tissues. Within the liver, a substantial fraction of sPACE NPs were phagocytosed by liver macrophages, while a smaller fraction of NPs accumulated in hepatic stellate cells and liver sinusoidal endothelial cells, suggesting that sPACE NPs could deliver siRNA to diverse cell populations within the liver. To test this hypothesis, we loaded sPACE NPs with siRNA designed to knockdown Nogo-B, a protein that has been implicated in the progression of alcoholic liver disease and liver fibrosis. These sPACE:siRNA NPs produced up to 60% Nogo-B protein suppression in the liver after systemic administration. We demonstrate that sPACE NPs can effectively deliver siRNA therapeutics to the liver to mediate protein knockdown in vivo.


Assuntos
Fígado/metabolismo , Nanopartículas , Proteínas Nogo/genética , Poliaminas/química , Animais , Células Endoteliais/metabolismo , Técnicas de Silenciamento de Genes , Células HEK293 , Células Estreladas do Fígado/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Interferente Pequeno/administração & dosagem
13.
Trends Mol Med ; 24(7): 598-606, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29884540

RESUMO

Successful molecular targeting of nanoparticle drug carriers can enhance therapeutic specificity and reduce systemic toxicity. Typically, ligands specific for cognate receptors expressed on the intended target cell type are conjugated to the nanoparticle surface. This approach, often called active targeting, seems to imply that the conjugated ligand imbues the nanoparticle with homing capacity. However, ligand-receptor interactions are mediated by short-range forces and cannot produce magnetic-like attraction over larger distances. Successful targeting actually involves two key characteristics: contact of the nanoparticle with the intended target cell and subsequent ligand-mediated retention at the site. Here we propose a conceptual framework, based on recent literature combined with basic principles of molecular interactions, to guide rational design of nanoparticle targeting strategies.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Animais , Portadores de Fármacos/química , Humanos , Ligantes
14.
J Biomed Mater Res A ; 106(8): 2190-2199, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29659132

RESUMO

Proper cell-material interactions are critical to remain cell function and thus successful tissue regeneration. Many fabrication processes have been developed to create microenvironments to control cell attachment and organization on a three-dimensional (3D) scaffold. However, these approaches often involve heavy engineering and only the surface layer can be patterned. We found that 3D extrusion based printing at high temperature and pressure will result an aligned effect on the polymer molecules, and this molecular arrangement will further induce the cell alignment and different differentiation capacities. In particular, articular cartilage tissue is known to have zonal collagen fiber and cell orientation to support different functions, where collagen fibers and chondrocytes align parallel, randomly, and perpendicular, respectively, to the surface of the joint. Therefore, cell alignment was evaluated in a cartilage model in this study. We used small angle X-ray scattering analysis to substantiate the polymer molecule alignment phenomenon. The cellular response was evaluated both in vitro and in vivo. Seeded mesenchymal stem cells (MSCs) showed different morphology and orientation on scaffolds, as a combined result of polymer molecule alignment and printed scaffold patterns. Gene expression results showed improved superficial zonal chondrogenic marker expression in parallel-aligned group. The cell alignment was successfully maintained in the animal model after 7 days with distinct MSC morphology between the casted and parallel printed scaffolds. This 3D printing induced polymer and cell alignment will have a significant impact on developing scaffold with controlled cell-material interactions for complex tissue engineering while avoiding complicated surface treatment, and therefore provides new concept for effective tissue repairing in future clinical applications. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2190-2199, 2018.


Assuntos
Cartilagem Articular/fisiologia , Polímeros/química , Impressão Tridimensional , Engenharia Tecidual/métodos , Animais , Morte Celular , Condrogênese/genética , Regulação da Expressão Gênica , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Ratos
15.
ACS Biomater Sci Eng ; 3(7): 1350-1358, 2017 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-33429693

RESUMO

Hybrid biomaterials, combining naturally derived and synthetic materials, offer a tissue engineering platform that can provide initial mechanical support from a synthetic biomaterial, as well as a viable, bioactive substrate to support native cell infiltration and remodeling. The goal of this work was to develop a directional delivery system for bioactive molecules that can be coupled with a hybrid biomaterial. It was hypothesized that by using poly(propylene fumarate) as a scaffold to encapsulate PLGA microparticles, a tunable and directional release would be achieved from the intact scaffold into the bioactive substrate, pericardium. Release will occur as poly(lactic-co-glycolic acid) microparticles degrade hydrolytically into biocompatible molecules, leaving the PPF scaffold unchanged within the release time frame and able to mechanically support the pericardium substrate through remodeling. This study evaluated the degradation and strength of the composite polymer layer, and determined the release of encapsulated factors to occur over 8 days, while the bulk polymer remained intact with near 100% of its original mass. Next, this study demonstrated sustained bioactive molecule release into cell culture, causing significant changes to cellular metabolic activity. In particular, delivering vascular endothelial growth factor from the composite material to endothelial cells increased metabolic activity over the same cells with unloaded composite material. Additionally, delivering tumor necrosis factor α from the composite material to L929 cells significantly reduced metabolic activity compared to the same cells with unloaded composite material (p < 0.05). Finally, directional release into a bioactive substrate was confirmed with localized immunostaining of the encapsulated factor.

16.
Acta Biomater ; 56: 3-13, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28342878

RESUMO

To accurately mimic the native tissue environment, tissue engineered scaffolds often need to have a highly controlled and varied display of three-dimensional (3D) architecture and geometrical cues. Additive manufacturing in tissue engineering has made possible the development of complex scaffolds that mimic the native tissue architectures. As such, architectural details that were previously unattainable or irreproducible can now be incorporated in an ordered and organized approach, further advancing the structural and chemical cues delivered to cells interacting with the scaffold. This control over the environment has given engineers the ability to unlock cellular machinery that is highly dependent upon the intricate heterogeneous environment of native tissue. Recent research into the incorporation of physical and chemical gradients within scaffolds indicates that integrating these features improves the function of a tissue engineered construct. This review covers recent advances on techniques to incorporate gradients into polymer scaffolds through additive manufacturing and evaluate the success of these techniques. As covered here, to best replicate different tissue types, one must be cognizant of the vastly different types of manufacturing techniques available to create these gradient scaffolds. We review the various types of additive manufacturing techniques that can be leveraged to fabricate scaffolds with heterogeneous properties and discuss methods to successfully characterize them. STATEMENT OF SIGNIFICANCE: Additive manufacturing techniques have given tissue engineers the ability to precisely recapitulate the native architecture present within tissue. In addition, these techniques can be leveraged to create scaffolds with both physical and chemical gradients. This work offers insight into several techniques that can be used to generate graded scaffolds, depending on the desired gradient. Furthermore, it outlines methods to determine if the designed gradient was achieved. This review will help to condense the abundance of information that has been published on the creation and characterization of gradient scaffolds and to provide a single review discussing both methods for manufacturing gradient scaffolds and evaluating the establishment of a gradient.


Assuntos
Polímeros/química , Impressão Tridimensional , Engenharia Tecidual/métodos , Alicerces Teciduais/química
17.
Tissue Eng Part C Methods ; 22(7): 663-70, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27206552

RESUMO

A critical challenge to the success of biodegradable vascular grafts is the establishment of a healthy endothelium. To establish this monolayer of endothelial cells (ECs), a variety of techniques have been developed, including cell seeding. Vascular grafts may be seeded with relevant cell types and allowed to mature before implantation. Due to the low proliferative ability of adult ECs and issues with donor site morbidity, there has been increasing interest in using endothelial progenitor cells (EPCs) for vascular healing procedures. In this work, we combined the proliferative and differentiation capabilities of a commercial cell line of early EPCs with an established bioreactor system to support the maturation of cell-seeded vascular grafts. All components of the vascular graft and bioreactor setup are commercially available and allow for complete customization of the scaffold and culturing system. This bioreactor setup enables the control of flow through the graft, imparting fluid shear stress on EPCs and affecting cellular proliferation and differentiation. Grafts cultured with EPCs in the bioreactor system demonstrated greatly increased cell populations and neotissue formation compared with grafts seeded and cultured in a static system. Increased expression of markers for mature endothelial tissues were also observed in bioreactor-cultured EPC-seeded grafts. These findings suggest the distinct advantages of a customizable bioreactor setup for the proliferation and maturation of EPCs. Such a strategy may be beneficial for utilizing EPCs in vascular tissue engineering applications.


Assuntos
Reatores Biológicos , Prótese Vascular , Diferenciação Celular , Células Progenitoras Endoteliais/citologia , Endotélio Vascular/citologia , Engenharia Tecidual/métodos , Proliferação de Células , Células Cultivadas , Humanos , Estresse Mecânico
18.
Adv Healthc Mater ; 4(16): 2475-87, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26227679

RESUMO

An ideal tissue engineering scaffold should not only promote, but take an active role in, constructive remodeling and formation of site appropriate tissue. Extracellular matrix (ECM)-derived proteins provide unmatched cellular recognition, and therefore influence cellular response towards predicted remodeling behaviors. Materials built with only these proteins, however, can degrade rapidly or begin too weak to substitute for compliant, matrix-dense tissues. The focus of this Progress Report is on biohybrid materials that incorporate polymer components with ECM-derived proteins, to produce a substrate with desired mechanical and degradation properties, as well as actively guide tissue remodeling. Materials are described through four fabrication methods: 1) polymer and ECM-protein fibers woven together, 2) polymer and ECM proteins combined in a bilayer, 3) cell-built ECM on polymer scaffold, and 4) ECM proteins and polymers combined in a single hydrogel. Scaffolds from each fabrication method can achieve characteristics suitable for different types of tissue. In vivo testing has shown progressive remodeling in injury models, and suggests ECM-based biohybrid materials promote a prohealing immune response over single component alternatives. The prohealing immune response is associated with lasting success and long term host maintenance of the implant.


Assuntos
Materiais Biocompatíveis/farmacologia , Matriz Extracelular/metabolismo , Engenharia Tecidual/métodos , Animais , Humanos , Inflamação/patologia
19.
Tissue Eng Part A ; 20(21-22): 2807-16, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25236439

RESUMO

Pericardium-based cardiovascular devices are currently bound by a 10-year maximum lifetime due to detrimental calcification and degradation. The goal of this work is to develop a novel synthetic material to create a lasting replacement for malfunctioning or diseased tissue in the cardiovascular system. This study couples poly(propylene fumarate) (PPF) and a natural biomaterial together in an unprecedented hybrid composite and evaluates the composite versus the standard glutaraldehyde-treated tissue. The polymer reinforcement is hypothesized to provide initial physical protection from proteolytic enzymes and degradation, but leave the original collagen and elastin matrix unaltered. The calcification rate and durability of the hybrid material are evaluated in vitro and in an in vivo subdermal animal model. Results demonstrate that PPF is an effective support and leads to significantly less calcium deposition, important metrics when evaluating cardiovascular material. By avoiding chemical crosslinking of the tissue and associated side effects, PPF-reinforced pericardium as a biohybrid material offers a promising potential direction for further development in cardiovascular material alternatives. Eliminating the basis for the majority of cardiovascular prosthetic failures could revolutionize expectations for extent of cardiovascular repair.


Assuntos
Bioprótese , Fumaratos/química , Pericárdio/imunologia , Pericárdio/transplante , Polipropilenos/química , Alicerces Teciduais , Animais , Materiais Biocompatíveis/química , Força Compressiva/fisiologia , Módulo de Elasticidade/fisiologia , Análise de Falha de Equipamento , Masculino , Teste de Materiais , Desenho de Prótese , Ratos , Ratos Sprague-Dawley , Estresse Mecânico , Resistência à Tração/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA