Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Am J Respir Crit Care Med ; 192(9): 1080-8, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26167730

RESUMO

RATIONALE: Diaphragm atrophy and dysfunction have been reported in humans during mechanical ventilation, but the prevalence, causes, and functional impact of changes in diaphragm thickness during routine mechanical ventilation for critically ill patients are unknown. OBJECTIVES: To describe the evolution of diaphragm thickness over time during mechanical ventilation, its impact on diaphragm function, and the influence of inspiratory effort on this phenomenon. METHODS: In three academic intensive care units, 107 patients were enrolled shortly after initiating ventilation along with 10 nonventilated intensive care unit patients (control subjects). Diaphragm thickness and contractile activity (quantified by the inspiratory thickening fraction) were measured daily by ultrasound. MEASUREMENTS AND MAIN RESULTS: Over the first week of ventilation, diaphragm thickness decreased by more than 10% in 47 (44%), was unchanged in 47 (44%), and increased by more than 10% in 13 (12%). Thickness did not vary over time following extubation or in nonventilated patients. Low diaphragm contractile activity was associated with rapid decreases in diaphragm thickness, whereas high contractile activity was associated with increases in diaphragm thickness (P = 0.002). Contractile activity decreased with increasing ventilator driving pressure (P = 0.01) and controlled ventilator modes (P = 0.02). Maximal thickening fraction (a measure of diaphragm function) was lower in patients with decreased or increased diaphragm thickness (n = 10) compared with patients with unchanged thickness (n = 10; P = 0.05 for comparison). CONCLUSIONS: Changes in diaphragm thickness are common during mechanical ventilation and may be associated with diaphragmatic weakness. Titrating ventilatory support to maintain normal levels of inspiratory effort may prevent changes in diaphragm configuration associated with mechanical ventilation.


Assuntos
Diafragma/diagnóstico por imagem , Respiração Artificial , Respiração , Idoso , Estado Terminal , Diafragma/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Contração Muscular/fisiologia , Debilidade Muscular/diagnóstico por imagem , Ultrassonografia
2.
Ann Am Thorac Soc ; 15(6): 735-744, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29584447

RESUMO

RATIONALE: Respiratory muscle weakness is common in critically ill patients; the role of targeted inspiratory muscle training (IMT) in intensive care unit rehabilitation strategies remains poorly defined. OBJECTIVES: The primary objective of the present study was to describe the range and tolerability of published methods for IMT. The secondary objectives were to determine whether IMT improves respiratory muscle strength and clinical outcomes in critically ill patients. METHODS: We conducted a systematic review to identify randomized and nonrandomized studies of physical rehabilitation interventions intended to strengthen the respiratory muscles in critically ill adults. We searched the MEDLINE, Embase, HealthSTAR, CINAHL, and CENTRAL databases (inception to September Week 3, 2017) and conference proceedings (2012 to 2017). Data were independently extracted by two authors and collected on a standardized report form. RESULTS: A total of 28 studies (N = 1,185 patients) were included. IMT was initiated during early mechanical ventilation (8 studies), after patients proved difficult to wean (14 studies), or after extubation (3 studies), and 3 other studies did not report exact timing. Threshold loading was the most common technique; 13 studies employed strength training regimens, 11 studies employed endurance training regimens, and 4 could not be classified. IMT was feasible, and there were few adverse events during IMT sessions (nine studies; median, 0%; interquartile range, 0-0%). In randomized trials (n = 20), IMT improved maximal inspiratory pressure compared with control (15 trials; mean increase, 6 cm H2O; 95% confidence interval [CI], 5-8 cm H2O; pooled relative ratio of means, 1.19; 95% CI, 1.14-1.25) and maximal expiratory pressure (4 trials; mean increase, 9 cm H2O; 95% CI, 5-14 cm H2O). IMT was associated with a shorter duration of ventilation (nine trials; mean difference, 4.1 d; 95% CI, 0.8-7.4 d) and a shorter duration of weaning (eight trials; mean difference, 2.3 d; 95% CI, 0.7-4.0 d), but confidence in these pooled estimates was low owing to methodological limitations, including substantial statistical and methodological heterogeneity. CONCLUSIONS: Most studies of IMT in critically ill patients have employed inspiratory threshold loading. IMT is feasible and well tolerated in critically ill patients and improves both inspiratory and expiratory muscle strength. The impact of IMT on clinical outcomes requires future confirmation.


Assuntos
Estado Terminal/reabilitação , Modalidades de Fisioterapia , Insuficiência Respiratória/reabilitação , Músculos Respiratórios/fisiopatologia , Adulto , Humanos , Insuficiência Respiratória/fisiopatologia
3.
J Crit Care ; 35: 33-50, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27481734

RESUMO

PURPOSE: The purpose of the study is to systematically review and summarize current literature concerning the validation and application of electrical impedance tomography (EIT) in mechanically ventilated adult patients. MATERIALS AND METHODS: An electronic search of MEDLINE, EMBASE, CINAHL, Cochrane Central Register of Controlled Trials, and the Web of Science was performed up to June 2014. Studies investigating the use of EIT in an adult human patient population treated with mechanical ventilation (MV) were included. Data extracted included study objectives, EIT details, interventions, MV protocol, validation and comparators, population characteristics, and key findings. RESULTS: Of the 67 included studies, 35 had the primary objective of validating EIT measures including regional ventilation distribution, lung volume, regional respiratory mechanics, and nonventilatory parameters. Thirty-two studies had the primary objective of applying EIT to monitor the response to therapeutic MV interventions including change in ventilation mode, patient repositioning, endotracheal suctioning, recruitment maneuvers, and change in positive end-expiratory pressure. CONCLUSIONS: In adult patients, EIT has been successfully validated for assessing ventilation distribution, measuring changes in lung volume, studying regional respiratory mechanics, and investigating nonventilatory parameters. Electrical impedance tomography has also been demonstrated to be useful in monitoring regional respiratory system changes during MV interventions, although existing literature lacks clinical outcome evidence.


Assuntos
Impedância Elétrica , Monitorização Fisiológica/métodos , Respiração Artificial , Tomografia , Adulto , Humanos , Reprodutibilidade dos Testes , Volume de Ventilação Pulmonar , Tomografia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA