Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Nucleic Acids Res ; 49(10): 5985-5997, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34037778

RESUMO

Pentatricopeptide repeat (PPR) proteins are helical repeat-proteins that bind RNA in a modular fashion with a sequence-specificity that can be manipulated by the use of an amino acid code. As such, PPR repeats are promising scaffolds for the design of RNA binding proteins for synthetic biology applications. However, the in vivo functional capabilities of artificial PPR proteins built from consensus PPR motifs are just starting to be explored. Here, we report in vivo functions of an artificial PPR protein, dPPRrbcL, made of consensus PPR motifs that were designed to bind a sequence near the 5' end of rbcL transcripts in Arabidopsis chloroplasts. We used a functional complementation assay to demonstrate that this protein bound its intended RNA target with specificity in vivo and that it substituted for a natural PPR protein by stabilizing processed rbcL mRNA. We targeted a second protein of analogous design to the petL 5' UTR, where it substituted for the native stabilizing PPR protein PGR3, albeit inefficiently. These results showed that artificial PPR proteins can be engineered to functionally mimic the class of native PPR proteins that serve as physical barriers against exoribonucleases.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Engenharia de Proteínas/métodos , RNA de Cloroplastos/metabolismo , Motivos de Ligação ao RNA/genética , Regiões 5' não Traduzidas , Arabidopsis/genética , Cloroplastos/genética , Expressão Gênica , Plantas Geneticamente Modificadas , Ligação Proteica , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Recombinantes , Ribulose-Bifosfato Carboxilase/genética
2.
BMC Genomics ; 23(1): 602, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35986253

RESUMO

It is currently assumed that around 100 million years ago, the common ancestor to the Fabales, Fagales, Rosales and Cucurbitales in Gondwana, developed a root nodule symbiosis with a nitrogen-fixing bacterium. The symbiotic trait evolved first in Frankia cluster-2; thus, strains belonging to this cluster are the best extant representatives of this original symbiont. Most cluster-2 strains could not be cultured to date, except for Frankia coriariae, and therefore many aspects of the symbiosis are still elusive. Based on phylogenetics of cluster-2 metagenome-assembled genomes (MAGs), it has been shown that the genomes of strains originating in Eurasia are highly conserved. These MAGs are more closely related to Frankia cluster-2 in North America than to the single genome available thus far from the southern hemisphere, i.e., from Papua New Guinea.To unravel more biodiversity within Frankia cluster-2 and predict routes of dispersal from Gondwana, we sequenced and analysed the MAGs of Frankia cluster-2 from Coriaria japonica and Coriaria intermedia growing in Japan, Taiwan and the Philippines. Phylogenetic analyses indicate there is a clear split within Frankia cluster-2, separating a continental from an island lineage. Presumably, these lineages already diverged in Gondwana.Based on fossil data on the host plants, we propose that these two lineages dispersed via at least two routes. While the continental lineage reached Eurasia together with their host plants via the Indian subcontinent, the island lineage spread towards Japan with an unknown host plant.


Assuntos
Frankia , Magnoliopsida , Frankia/genética , Magnoliopsida/genética , Metagenoma , Fixação de Nitrogênio , Filogenia , Plantas/genética , Simbiose/genética
3.
New Phytol ; 234(1): 242-255, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35067935

RESUMO

Nodule microbiota are dominated by symbiotic nitrogen-fixing rhizobia, however, other non-rhizobial bacteria also colonise this niche. Although many of these bacteria harbour plant-growth-promoting functions, it is not clear whether these less abundant nodule colonisers impact root-nodule symbiosis. We assessed the relationship between the nodule microbiome and nodulation as influenced by the soil microbiome, by using a metabarcoding approach to characterise the communities inside nodules of healthy and starved Lotus species. A machine learning algorithm and network analyses were used to identify nodule bacteria of interest, which were re-inoculated onto plants in controlled conditions to observe their potential functionality. The nodule microbiome of all tested species differed according to inoculum, but only that of Lotus burttii varied with plant health. Amplicon sequence variants representative of Pseudomonas species were the most indicative non-rhizobial signatures inside healthy L. burttii nodules and negatively correlated with Rhizobium sequences. A representative Pseudomonas isolate co-colonised nodules infected with a beneficial Mesorhizobium, but not with an ineffective Rhizobium isolate and another even reduced the number of ineffective nodules induced on Lotus japonicus. Our results show that nodule endophytes influence the overall outcome of the root-nodule symbiosis, albeit in a plant host-specific manner.


Assuntos
Lotus , Microbiota , Rhizobium , Lotus/microbiologia , Pseudomonas/genética , Nódulos Radiculares de Plantas/microbiologia , Simbiose
4.
Plant Cell ; 31(6): 1308-1327, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30962391

RESUMO

A key characteristic of chloroplast gene expression is the predominance of posttranscriptional control via numerous nucleus-encoded RNA binding factors. Here, we explored the essential roles of the S1-domain-containing protein photosynthetic electron transfer B (petB)/ petD Stabilizing Factor (BSF) in the stabilization and translation of chloroplast mRNAs. BSF binds to the intergenic region of petB-petD, thereby stabilizing 3' processed petB transcripts and stimulating petD translation. BSF also binds to the 5' untranslated region of petA and activates its translation. BSF displayed nucleic-acid-melting activity in vitro, and its absence induces structural changes to target RNAs in vivo, suggesting that BSF functions as an RNA chaperone to remodel RNA structure. BSF physically interacts with the pentatricopeptide repeat protein Chloroplast RNA Processing 1 (AtCRP1) and the ribosomal release factor-like protein Peptide chain Release Factor 3 (PrfB3), whose established RNA ligands overlap with those of BSF. In addition, PrfB3 stimulated the RNA binding ability of BSF in vitro. We propose that BSF and PrfB3 cooperatively reduce the formation of secondary RNA structures within target mRNAs and facilitate AtCRP1 binding. The translation activation function of BSF for petD is conserved in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays), but that for petA operates specifically in Arabidopsis. Our study sheds light on the mechanisms by which RNA binding proteins cooperatively regulate mRNA stability and translation in chloroplasts.


Assuntos
Arabidopsis/metabolismo , Cloroplastos/metabolismo , Estabilidade de RNA/fisiologia , Zea mays/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estabilidade de RNA/genética , Zea mays/genética
5.
Int J Syst Evol Microbiol ; 72(12)2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36748598

RESUMO

An actinobacterial strain, CMB-FB, was isolated from surface-sterilized root nodules of a Coriaria intermedia plant growing along Halsema Highway in the province of Benguet (Luzon, Philippines). The 16S rRNA gene sequence of CMB-FB showed high sequence similarity to those of the type strains of Streptomyces rishiriensis (99.4 %), Streptomyces humidus (99.1 %), Streptomyces cacaoi subsp. asoensis (99.0 %), and Streptomyces phaeofaciens (98.6 %). The major menaquinones of CMB-FB were composed of MK-9(H4), MK-9(H6) and MK-9(H8), and there was a minor contribution of MK-9(H10). The polar lipid profile consisted of phosphatidylethanolamine, unidentified aminolipids and phospholipids, a glycophospholipid and four unidentified lipids. The diagnostic diamino acid of the peptidoglycan was meso-diaminopimelic acid. The major fatty acids were iso-C16 : 0, anteiso-C15 : 0 and anteiso-C17 : 0. The results of physiological analysis indicated that CMB-FB was mesophilic. The results of phylogenetic, genome-genome distance calculation and average nucleotide identity analysis indicated that the isolated strain represents the type strain of a novel species. On the basis of these results, strain CMB-FB (=DSM 112754T=LMG 32457T) is proposed as the type strain of the novel species Streptomyces coriariae sp. nov.


Assuntos
Ácidos Graxos , Streptomyces , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , Filipinas , Fosfolipídeos/química , Vitamina K 2/química
6.
BMC Evol Biol ; 20(1): 123, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32942986

RESUMO

BACKGROUND: Hybridization is a central mechanism in evolution, producing new species or introducing important genetic variation into existing species. In plant-pathogenic fungi, adaptation and specialization to exploit a host species are key determinants of evolutionary success. Here, we performed experimental crosses between the two pathogenic Microbotryum species, M. lychnidis-dioicae and M. silenes-acaulis that are specialized to different hosts. The resulting offspring were analyzed on phenotypic and genomic levels to describe genomic characteristics of hybrid offspring and genetic factors likely involved in host-specialization. RESULTS: Genomic analyses of interspecific fungal hybrids revealed that individuals were most viable if the majority of loci were inherited from one species. Interestingly, species-specific loci were strictly controlled by the species' origin of the mating type locus. Moreover we detected signs of crossing over and chromosome duplications in the genomes of the analyzed hybrids. In Microbotryum, mitochondrial DNA was found to be uniparentally inherited from the a2 mating type. Genome comparison revealed that most gene families are shared and the majority of genes are conserved between the two species, indicating very similar biological features, including infection and pathogenicity processes. Moreover, we detected 211 candidate genes that were retained under host-driven selection of backcrossed lines. These genes and might therefore either play a crucial role in host specialization or be linked to genes that are essential for specialization. CONCLUSION: The combination of genome analyses with experimental selection and hybridization is a promising way to investigate host-pathogen interactions. This study manifests genetic factors of host specialization that are required for successful biotrophic infection of the post-zygotic stage, but also demonstrates the strong influence of intra-genomic conflicts or instabilities on the viability of hybrids in the haploid host-independent stage.


Assuntos
Basidiomycota , Genoma Fúngico , Meiose , Recombinação Genética , Basidiomycota/genética , Basidiomycota/patogenicidade , Cruzamentos Genéticos , DNA Mitocondrial/genética , Especificidade da Espécie , Virulência
7.
Plant Physiol ; 179(1): 248-264, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30409856

RESUMO

The chloroplast hosts photosynthesis and a variety of metabolic pathways that are essential for plant viability and acclimation processes. In this study, we show that the sole plastid UMP kinase (PUMPKIN) in Arabidopsis (Arabidopsis thaliana) associates specifically with the introns of the plastid transcripts trnG-UCC, trnV-UAC, petB, petD, and ndhA in vivo, as revealed by RNA immunoprecipitation coupled with deep sequencing (RIP-Seq); and that PUMPKIN can bind RNA efficiently in vitro. Analyses of target transcripts showed that PUMPKIN affects their metabolism. Null alleles and knockdowns of pumpkin were viable but clearly affected in growth, plastid translation, and photosynthetic performance. In pumpkin mutants, the levels of many plastid transcripts were reduced, while the amounts of others were increased, as revealed by RNA-Seq analysis. PUMPKIN is a homomultimeric, plastid-localized protein that forms in vivo RNA-containing megadalton-sized complexes and catalyzes the ATP-dependent conversion of UMP to UDP in vitro with properties characteristic of known essential eubacterial UMP kinases. A moonlighting function of PUMPKIN combining RNA and pyrimidine metabolism is discussed.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/enzimologia , Núcleosídeo-Fosfato Quinase/fisiologia , Arabidopsis/genética , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Íntrons/genética , Fotossíntese , Plastídeos/enzimologia , Plastídeos/metabolismo
8.
Int J Syst Evol Microbiol ; 70(10): 5539-5550, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32897848

RESUMO

Strain aSej3T was isolated from a root nodule of a Lupinus angustifolius plant growing in Bizerte, Tunisia. 16S rRNA gene analysis placed this strain within the genus Bradyrhizobium. Multilocus sequence analysis (MLSA) including three housekeeping genes (glnII, gyrB and recA) grouped aSej3T together with Bradyrhizobium rifense CTAW71T, Bradyrhizobium cytisi CTAW11T, Bradyrhizobium ganzhouense RITF806T, Bradyrhizobium lupini USDA 3051T and Bradyrhizobium canariense BTA-1T. MLSA with five housekeeping genes (dnaK, glnII, gyrB, recA and rpoB) revealed that this strain shares less than 93.5 % nucleotide identity with other type strains. Genome sequencing and inspection revealed a genome size of 8.83 Mbp with a G+C content of 62.8 mol%. Genome-wide average nucleotide identity and digital DNA-DNA hybridization values were below 87.5 and 36.2 %, respectively, when compared to described Bradyrhizobium species. Strain aSej3T nodulated L. angustifolius plants under axenic conditions and its nodC gene clustered within the genistearum symbiovar. Altogether, the phylogenetic data and the chemotaxonomic characteristics of this strain support that aSej3T represents a new species for which we propose the name Bradyrhizobium hipponense sp. nov. with the type strain aSej3T (=DSM 108913T=LMG 31020T).


Assuntos
Bradyrhizobium/classificação , Lupinus/microbiologia , Filogenia , Nódulos Radiculares de Plantas/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Genes Bacterianos , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Simbiose , Tunísia
9.
Appl Environ Microbiol ; 85(22)2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31492667

RESUMO

Photorhabdus luminescens is a Gram-negative bacterium that lives in symbiosis with soil nematodes and is simultaneously highly pathogenic toward insects. The bacteria exist in two phenotypically different forms, designated primary (1°) and secondary (2°) cells. Yet unknown environmental stimuli as well as global stress conditions induce phenotypic switching of up to 50% of 1° cells to 2° cells. An important difference between the two phenotypic forms is that 2° cells are unable to live in symbiosis with nematodes and are therefore believed to remain in the soil after a successful infection cycle. In this work, we performed a transcriptomic analysis to highlight and better understand the role of 2° cells and their putative ability to adapt to living in soil. We could confirm that the major phenotypic differences between the two cell forms are mediated at the transcriptional level as the corresponding genes were downregulated in 2° cells. Furthermore, 2° cells seem to be adapted to another environment as we found several differentially expressed genes involved in the cells' metabolism, motility, and chemotaxis as well as stress resistance, which are either up- or downregulated in 2° cells. As 2° cells, in contrast to 1° cells, chemotactically responded to different attractants, including plant root exudates, there is evidence for the rhizosphere being an alternative environment for the 2° cells. Since P. luminescens is biotechnologically used as a bio-insecticide, investigation of a putative interaction of 2° cells with plants is also of great interest for agriculture.IMPORTANCE The biological function and the fate of P. luminescens 2° cells were unclear. Here, we performed comparative transcriptomics of P. luminescens 1° and 2° cultures and found several genes, not only those coding for known phenotypic differences of the two cell forms, that are up- or downregulated in 2° cells compared to levels in 1° cells. Our results suggest that when 1° cells convert to 2° cells, they drastically change their way of life. Thus, 2° cells could easily adapt to an alternative environment such as the rhizosphere and live freely, independent of a host, putatively utilizing plant-derived compounds as nutrient sources. Since 2° cells are not able to reassociate with the nematodes, an alternative lifestyle in the rhizosphere would be conceivable.


Assuntos
Insetos/microbiologia , Photorhabdus/patogenicidade , Animais , Proteínas de Bactérias/genética , Bioensaio , Biologia Computacional , Perfilação da Expressão Gênica , Larva/microbiologia , Mariposas/microbiologia , Fenótipo , Photorhabdus/genética , Rizosfera , Simbiose
10.
New Phytol ; 222(3): 1474-1492, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30663769

RESUMO

Biotrophic fungal plant pathogens can balance their virulence and form intricate relationships with their hosts. Sometimes, this leads to systemic host colonization over long time scales without macroscopic symptoms. However, how plant-pathogenic endophytes manage to establish their sustained systemic infection remains largely unknown. Here, we present a genomic and transcriptomic analysis of Thecaphora thlaspeos. This relative of the well studied grass smut Ustilago maydis is the only smut fungus adapted to Brassicaceae hosts. Its ability to overwinter with perennial hosts and its systemic plant infection including roots are unique characteristics among smut fungi. The T. thlaspeos genome was assembled to the chromosome level. It is a typical smut genome in terms of size and genome characteristics. In silico prediction of candidate effector genes revealed common smut effector proteins and unique members. For three candidates, we have functionally demonstrated effector activity. One of these, TtTue1, suggests a potential link to cold acclimation. On the plant side, we found evidence for a typical immune response as it is present in other infection systems, despite the absence of any macroscopic symptoms during infection. Our findings suggest that T. thlaspeos distinctly balances its virulence during biotrophic growth ultimately allowing for long-lived infection of its perennial hosts.


Assuntos
Basidiomycota/genética , Brassicaceae/microbiologia , Proteínas Fúngicas/metabolismo , Genoma Fúngico , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Transcriptoma/genética , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/microbiologia , Basidiomycota/patogenicidade , Brassicaceae/imunologia , Sequência Conservada , Proteínas Fúngicas/química , Regulação Fúngica da Expressão Gênica , Ontologia Genética , Anotação de Sequência Molecular , Filogenia , Plantas Geneticamente Modificadas , Ácido Salicílico/metabolismo , Especificidade da Espécie , Sintenia/genética , Zea mays/microbiologia
11.
Plant J ; 92(3): 400-413, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28805278

RESUMO

The plant-specific PALE CRESS (PAC) protein has previously been shown to be essential for photoautotrophic growth. Here we further investigated the molecular function of the PAC protein. PAC localizes to plastid nucleoids and forms large proteinaceous and RNA-containing megadalton complexes. It co-immunoprecipitates with a specific subset of chloroplast RNAs including psbK-psbI, ndhF, ndhD, and 23S ribosomal RNA (rRNA), as demonstrated by RNA immunoprecipitation in combination with high throughput RNA sequencing (RIP-seq) analyses. Furthermore, it co-migrates with premature 50S ribosomal particles and specifically binds to 23S rRNA in vitro. This coincides with severely reduced levels of 23S rRNA in pac leading to translational deficiencies and related alterations of plastid transcript patterns and abundance similar to plants treated with the translation inhibitor lincomycin. Thus, we conclude that deficiency in plastid ribosomes accounts for the pac phenotype. Moreover, the absence or reduction of PAC levels in the corresponding mutants induces structural changes of the 23S rRNA, as demonstrated by in vivo RNA structure probing. Our results indicate that PAC binds to the 23S rRNA to promote the biogenesis of the 50S subunit.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Ligação a RNA/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cloroplastos/metabolismo , Genes Reporter , Mutação , Fenótipo , Plastídeos/metabolismo , Transporte Proteico , Interferência de RNA , RNA de Cloroplastos/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes , Subunidades Ribossômicas/metabolismo , Ribossomos/metabolismo
12.
Mol Plant Microbe Interact ; 30(4): 271-282, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28421861

RESUMO

Smut fungi are globally distributed plant pathogens that infect agriculturally important crop plants such as maize or potato. To date, molecular studies on plant responses to smut fungi are challenging due to the genetic complexity of their host plants. Therefore, we set out to investigate the known smut fungus of Brassicaceae hosts, Thecaphora thlaspeos. T. thlaspeos infects different Brassicaceae plant species throughout Europe, including the perennial model plant Arabis alpina. In contrast to characterized smut fungi, mature and dry T. thlaspeos teliospores germinated only in the presence of a plant signal. An infectious filament emerges from the teliospore, which can proliferate as haploid filamentous cultures. Haploid filaments from opposite mating types mate, similar to sporidia of the model smut fungus Ustilago maydis. Consistently, the a and b mating locus genes are conserved. Infectious filaments can penetrate roots and aerial tissues of host plants, causing systemic colonization along the vasculature. Notably, we could show that T. thlaspeos also infects Arabidopsis thaliana. Exploiting the genetic resources of A. thaliana and Arabis alpina will allow us to characterize plant responses to smut infection in a comparative manner and, thereby, characterize factors for endophytic growth as well as smut fungi virulence in dicot plants.


Assuntos
Adaptação Fisiológica , Basidiomycota/fisiologia , Brassicaceae/microbiologia , Doenças das Plantas/microbiologia , Sequência de Bases , Basidiomycota/genética , Sequência Conservada , Proteínas Fúngicas/metabolismo , Genes Fúngicos Tipo Acasalamento , Loci Gênicos , Modelos Biológicos , Dormência de Plantas , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Multimerização Proteica , Transdução de Sinais , Fatores de Transcrição/metabolismo
13.
BMC Genomics ; 17: 101, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26861502

RESUMO

BACKGROUND: Arbuscular mycorrhizal fungi (AMF) form an ecologically important symbiosis with more than two thirds of studied land plants. Recent studies of plant-pathogen interactions showed that effector proteins play a key role in host colonization by controlling the plant immune system. We hypothesise that also for symbiotic-plant interactions the secreted effectome of the fungus is a major component of communication and the conservation level of effector proteins between AMF species may be indicative whether they play a fundamental role. RESULTS: In this study, we used a bioinformatics pipeline to predict and compare the effector candidate repertoire of the two AMF species, Rhizophagus irregularis and Rhizophagus clarus. Our in silico pipeline revealed a list of 220 R. irregularis candidate effector genes that create a valuable information source to elucidate the mechanism of plant infection and colonization by fungi during AMF symbiotic interaction. While most of the candidate effectors show no homologies to known domains or proteins, the candidates with homologies point to potential roles in signal transduction, cell wall modification or transcription regulation. A remarkable aspect of our work is presence of a large portion of the effector proteins involved in symbiosis, which are not unique to each fungi or plant species, but shared along the Glomeromycota phylum. For 95% of R. irregularis candidates we found homologs in a R. clarus genome draft generated by Illumina high-throughput sequencing. Interestingly, 9% of the predicted effectors are at least as conserved between the two Rhizophagus species as proteins with housekeeping functions (similarity > 90%). Therefore, we state that this group of highly conserved effector proteins between AMF species may play a fundamental role during fungus-plant interaction. CONCLUSIONS: We hypothesise that in symbiotic interactions the secreted effectome of the fungus might be an important component of communication. Identification and functional characterization of the primary AMF effectors that regulate symbiotic development will help in understanding the mechanisms of fungus-plant interaction.


Assuntos
Genoma Fúngico , Glomeromycota/classificação , Glomeromycota/genética , Micorrizas , Parede Celular/genética , Parede Celular/metabolismo , Biologia Computacional/métodos , Enzimas/genética , Enzimas/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genômica/métodos , Glomeromycota/enzimologia , Glomeromycota/metabolismo , Raízes de Plantas/microbiologia , Sinais Direcionadores de Proteínas/genética , Simbiose
14.
Environ Microbiol ; 18(1): 21-37, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26060021

RESUMO

While magnetosome biosynthesis within the magnetotactic Proteobacteria is increasingly well understood, much less is known about the genetic control within deep-branching phyla, which have a unique ultrastructure and biosynthesize up to several hundreds of bullet-shaped magnetite magnetosomes arranged in multiple bundles of chains, but have no cultured representatives. Recent metagenomic analysis identified magnetosome genes in the genus 'Candidatus Magnetobacterium' homologous to those in Proteobacteria. However, metagenomic analysis has been limited to highly abundant members of the community, and therefore only little is known about the magnetosome biosynthesis, ecophysiology and metabolic capacity in deep-branching MTB. Here we report the analysis of single-cell derived draft genomes of three deep-branching uncultivated MTB. Single-cell sorting followed by whole genome amplification generated draft genomes of Candidatus Magnetobacterium bavaricum and Candidatus Magnetoovum chiemensis CS-04 of the Nitrospirae phylum. Furthermore, we present the first, nearly complete draft genome of a magnetotactic representative from the candidate phylum Omnitrophica, tentatively named Candidatus Omnitrophus magneticus SKK-01. Besides key metabolic features consistent with a common chemolithoautotrophic lifestyle, we identified numerous, partly novel genes most likely involved in magnetosome biosynthesis of bullet-shaped magnetosomes and their arrangement in multiple bundles of chains.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Genoma Bacteriano/genética , Sedimentos Geológicos/microbiologia , Magnetossomos/genética , Sequência de Bases , DNA Bacteriano/genética , Óxido Ferroso-Férrico/metabolismo , Genômica , Magnetossomos/metabolismo , Metagenômica , Dados de Sequência Molecular , Família Multigênica , Análise de Sequência de DNA
15.
Appl Environ Microbiol ; 82(10): 3032-3041, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26969709

RESUMO

UNLABELLED: Magnetotactic bacteria biosynthesize specific organelles, the magnetosomes, which are membrane-enclosed crystals of a magnetic iron mineral that are aligned in a linear chain. The number and size of magnetosome particles have to be critically controlled to build a sensor sufficiently strong to ensure the efficient alignment of cells within Earth's weak magnetic field while at the same time minimizing the metabolic costs imposed by excessive magnetosome biosynthesis. Apart from their biological function, bacterial magnetosomes have gained considerable interest since they provide a highly useful model for prokaryotic organelle formation and represent biogenic magnetic nanoparticles with exceptional properties. However, potential applications have been hampered by the difficult cultivation of these fastidious bacteria and their poor yields of magnetosomes. In this study, we found that the size and number of magnetosomes within the cell are controlled by many different Mam and Mms proteins. We present a strategy for the overexpression of magnetosome biosynthesis genes in the alphaproteobacterium Magnetospirillum gryphiswaldense by chromosomal multiplication of individual and multiple magnetosome gene clusters via transposition. While stepwise amplification of the mms6 operon resulted in the formation of increasingly larger crystals (increase of ∼35%), the duplication of all major magnetosome operons (mamGFDC, mamAB, mms6, and mamXY, comprising 29 genes in total) yielded an overproducing strain in which magnetosome numbers were 2.2-fold increased. We demonstrate that the tuned expression of the mam and mms clusters provides a powerful strategy for the control of magnetosome size and number, thereby setting the stage for high-yield production of tailored magnetic nanoparticles by synthetic biology approaches. IMPORTANCE: Before our study, it had remained unknown how the upper sizes and numbers of magnetosomes are genetically regulated, and overproduction of magnetosome biosynthesis had not been achieved, owing to the difficulties of large-scale genome engineering in the recalcitrant magnetotactic bacteria. In this study, we established and systematically explored a strategy for the overexpression of magnetosome biosynthesis genes by genomic amplification of single and multiple magnetosome gene clusters via sequential chromosomal insertion by transposition. Our findings also indicate that the expression levels of magnetosome proteins together limit the upper size and number of magnetosomes within the cell. We demonstrate that tuned overexpression of magnetosome gene clusters provides a powerful strategy for the precise control of magnetosome size and number.


Assuntos
Dosagem de Genes , Genes Bacterianos , Magnetossomos/metabolismo , Magnetospirillum/genética , Magnetospirillum/metabolismo , Família Multigênica , Biogênese de Organelas
16.
BMC Genomics ; 16: 620, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26285697

RESUMO

BACKGROUND: Adaptive manipulation of animal behavior by parasites functions to increase parasite transmission through changes in host behavior. These changes can range from slight alterations in existing behaviors of the host to the establishment of wholly novel behaviors. The biting behavior observed in Carpenter ants infected by the specialized fungus Ophiocordyceps unilateralis s.l. is an example of the latter. Though parasitic manipulation of host behavior is generally assumed to be due to the parasite's gene expression, few studies have set out to test this. RESULTS: We experimentally infected Carpenter ants to collect tissue from both parasite and host during the time period when manipulated biting behavior is experienced. Upon observation of synchronized biting, samples were collected and subjected to mixed RNA-Seq analysis. We also sequenced and annotated the O. unilateralis s.l. genome as a reference for the fungal sequencing reads. CONCLUSIONS: Our mixed transcriptomics approach, together with a comparative genomics study, shows that the majority of the fungal genes that are up-regulated during manipulated biting behavior are unique to the O. unilateralis s.l. genome. This study furthermore reveals that the fungal parasite might be regulating immune- and neuronal stress responses in the host during manipulated biting, as well as impairing its chemosensory communication and causing apoptosis. Moreover, we found genes up-regulated during manipulation that putatively encode for proteins with reported effects on behavioral outputs, proteins involved in various neuropathologies and proteins involved in the biosynthesis of secondary metabolites such as alkaloids.


Assuntos
Formigas/genética , Formigas/microbiologia , Comportamento Animal/fisiologia , Saccharomycetales/fisiologia , Análise de Sequência de RNA/métodos , Animais , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Genoma Fúngico , Genoma de Inseto , Interações Hospedeiro-Patógeno , Filogenia , Saccharomycetales/genética
17.
Plant J ; 75(1): 117-129, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23627596

RESUMO

Arbuscular mycorrhiza (AM) fungi form nutrient-acquiring symbioses with the majority of higher plants. Nutrient exchange occurs via arbuscules, highly branched hyphal structures that are formed within root cortical cells. With a view to identifying host genes involved in AM development, we isolated Lotus japonicus AM-defective mutants via a microscopic screen of an ethyl methanesulfonate-mutagenized population. A standardized mapping procedure was developed that facilitated positioning of the defective loci on the genetic map of L. japonicus, and, in five cases, allowed identification of mutants of known symbiotic genes. Two additional mutants representing independent loci did not form mature arbuscules during symbiosis with two divergent AM fungal species, but exhibited signs of premature arbuscule arrest or senescence. Marker gene expression patterns indicated that the two mutants are affected in distinct steps of arbuscule development. Both mutants formed wild-type-like root nodules upon inoculation with Mesorhizobium loti, indicating that the mutated loci are essential during AM but not during root nodule symbiosis.


Assuntos
Fungos/fisiologia , Regulação da Expressão Gênica de Plantas , Lotus/genética , Mesorhizobium/fisiologia , Micorrizas/genética , Mapeamento Cromossômico , Metanossulfonato de Etila/farmacologia , Fungos/crescimento & desenvolvimento , Fungos/ultraestrutura , Loci Gênicos , Hifas , Lotus/crescimento & desenvolvimento , Lotus/microbiologia , Lotus/ultraestrutura , Mutação , Micorrizas/crescimento & desenvolvimento , Micorrizas/ultraestrutura , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nodulação , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Raízes de Plantas/ultraestrutura , Nódulos Radiculares de Plantas , Análise de Sequência de DNA , Simbiose
18.
J Cell Sci ; 125(Pt 11): 2740-52, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22357951

RESUMO

Long-distance transport of mRNAs is important in determining polarity in eukaryotes. Molecular motors shuttle large ribonucleoprotein complexes (mRNPs) containing RNA-binding proteins and associated factors along microtubules. However, precise mechanisms including the interplay of molecular motors and a potential connection to membrane trafficking remain elusive. Here, we solve the motor composition of transported mRNPs containing the RNA-binding protein Rrm4 of the pathogen Ustilago maydis. The underlying transport process determines the axis of polarity in infectious filaments. Plus-end-directed Kin3, a kinesin-3 type motor, mediates anterograde transport of mRNPs and is also present in transport units moving retrogradely. Split dynein Dyn1-Dyn2 functions in retrograde movement of mRNPs. Plus-end-directed conventional kinesin Kin1 is indirectly involved by transporting minus-end-directed dynein back to plus ends. Importantly, we additionally demonstrate that Rrm4-containing mRNPs colocalise with the t-SNARE Yup1 on shuttling endosomes and that functional endosomes are essential for mRNP movement. Either loss of Kin3 or removal of its lipid-binding pleckstrin-homology domain abolishes Rrm4-dependent movement without preventing colocalisation of Rrm4 and Yup1-positive endosomes. In summary, we uncovered the combination of motors required for mRNP shuttling along microtubules. Furthermore, intimately linked co-transport of endosomes and mRNPs suggests vesicle hitchhiking as mode of mRNP transport.


Assuntos
Dineínas/metabolismo , Endossomos/metabolismo , Proteínas Fúngicas/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Ribonucleoproteínas/metabolismo , Ustilago/metabolismo , Mutação/genética , Transporte Proteico , Compostos de Piridínio/metabolismo , Compostos de Amônio Quaternário/metabolismo , Ustilago/citologia
19.
Eukaryot Cell ; 12(11): 1554-62, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24058172

RESUMO

Members of the Glomeromycota form the arbuscular mycorrhiza (AM) symbiosis. They supply plants with inorganic nutrients, including nitrogen, from the soil. To gain insight into transporters potentially facilitating nitrogen transport processes, ammonium transporters (AMTs) of Geosiphon pyriformis, a glomeromycotan fungus forming a symbiosis with cyanobacteria, were studied. Three AMT genes were identified, and all three were expressed in the symbiotic stage. The localization and functional characterization of the proteins in a heterologous yeast system revealed distinct characteristics for each of them. AMT1 of G. pyriformis (GpAMT1) and GpAMT2 were both plasma membrane localized, but only GpAMT1 transported ammonium. Neither protein transported the ammonium analogue methylammonium. Unexpectedly, GpAMT3 was localized in the vacuolar membrane, and it has as-yet-unknown transport characteristics. An unusual cysteine residue in the AMT signature of GpAMT2 and GpAMT3 was identified, and the corresponding residue was demonstrated to play an important role in ammonium transport. Surprisingly, each of the three AMTs of G. pyriformis had very distinct features. The localization of an AMT in the yeast vacuolar membrane is novel, as is the described amino acid residue that clearly influences ammonium transport. The AMT characteristics might reflect adaptations to the lifestyle of glomeromycotan fungi.


Assuntos
Compostos de Amônio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Proteínas Fúngicas/metabolismo , Glomeromycota/metabolismo , Sequência de Aminoácidos , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Glomeromycota/genética , Membranas Intracelulares/metabolismo , Dados de Sequência Molecular , Vacúolos/metabolismo
20.
Plant Commun ; : 101069, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39169625

RESUMO

Plastid biogenesis and the coordination of plastid and nuclear genome expression through anterograde and retrograde signaling are essential for plant development. GENOMES UNCOUPLED1 (GUN1) plays a central role in retrograde signaling during early plant development. The putative function of GUN1 has been extensively studied, but its molecular function remains controversial. Here, we evaluate published transcriptome data and generate our own data from gun1 mutants grown under signaling relevant conditions to show that editing and splicing are not relevant for GUN1-dependent retrograde signaling. Our study of the plastid (post)-transcriptome of gun1 seedlings with white and pale cotyledons demonstrates that GUN1 deficiency significantly alters the entire plastid transcriptome. By combining this result with a PPR code-based prediction and experimental validation by RNA immunoprecipitation experiments, several putative targets of GUN1 were identified, including tRNAs and RNAs derived from ycf1.2, rpoC1 and rpoC2, and the ndhH-ndhA-ndhI-ndhG-ndhE-psaC-ndhD gene cluster. The absence of plastid rRNAs and the significant reduction of almost all plastid transcripts in white gun1 mutants account for the cotyledon phenotype. Our study provides evidence for RNA binding and maturation as the long-sought molecular function of GUN1 and resolves long-standing controversies. We anticipate that our findings will serve as a basis for subsequent studies investigating the mechanism of plastid gene expression and will facilitate the elucidation of GUN1's function in retrograde signaling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA