Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurochem ; 162(2): 156-165, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35526109

RESUMO

Inflammatory hyperalgesia represents a nociceptive phenotype that can become persistent in nature through dynamic protein modifications. However, a large gap in knowledge exists concerning how the integration of intracellular signaling molecules coordinates a persistent inflammatory phenotype. Herein, we demonstrate that Raf Kinase Anchoring Protein (RKIP) interrupts a vital canonical desensitization pathway to maintain bradykinin (BK) receptor activation in primary afferent neurons. Biochemical analyses of primary neuronal cultures indicate bradykinin-stimulated PKC phosphorylation of RKIP at Ser153. Furthermore, BK exposure increases G-protein Receptor Kinase 2 (GRK2) binding to RKIP, inhibiting pharmacological desensitization of the BK receptor. Additional studies found that molecular RKIP down-regulation increases BK receptor desensitization in real-time imaging of primary afferent neurons, identifying a key pathway integrator in the desensitization process that controls multiple GRK2-sensitive G-protein coupled receptors. Therefore, RKIP serves as an integral scaffolding protein that inhibits BK receptor desensitization.


Assuntos
Bradicinina , Receptores da Bradicinina , Bradicinina/farmacologia , Fosforilação , Transdução de Sinais , Fatores de Transcrição , Quinases raf
2.
J Pharmacol Exp Ther ; 378(2): 96-107, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33990416

RESUMO

Opioid overdose intervention by naloxone, a high affinity receptor antagonist, reverses opioid-induced respiratory depression (OIRD) and analgesia by displacing opioids. Systemic naloxone stimulates release of the hypothalamic neuropeptide oxytocin, which has analgesic properties and participates in cardiorespiratory homeostasis. To test the hypothesis that oxytocin can reverse OIRD, we assessed the rescue potential of graded doses (0, 0.1, 2, 5, 10, 50 nmol/kg, i.v.) of oxytocin to counter fentanyl (60 nmol/kg, i.v.)-induced depression of neural inspiration indexed by recording phrenic nerve activity (PNA) in anesthetized (urethane/α-chloralose), vagotomized, and artificially ventilated rats. Oxytocin dose-dependently rescued fentanyl OIRD by almost immediately reversing PNA burst arrest (P = 0.0057) and restoring baseline burst frequency (P = 0.0016) and amplitude (P = 0.0025) at low but not high doses, resulting in inverted bell-shaped dose-response curves. Oxytocin receptor antagonism (40 nmol/kg, i.v.) prevented oxytocin reversal of OIRD (arrest: P = 0.0066, frequency: P = 0.0207, amplitude: P = 0.0022). Vasopressin 1A receptor (V1aR) antagonism restored high-dose oxytocin efficacy to rescue OIRD (P = 0.0170 to P < 0.0001), resulting in classic sigmoidal dose-response curves, and prevented (P = 0.0135) transient hypertension from V1aR cross-activation (P = 0.0275). Alone, vasopressin (5 nmol/kg, i.v.) failed to reverse fentanyl respiratory arrest (P = 0.6184). The nonpeptide oxytocin receptor agonist WAY-267464 (75 nmol/kg, i.v.), which has V1aR antagonist properties, quickly reversed fentanyl OIRD (P < 0.0001), with rapid recovery of PNA frequency (P = 0.0011) and amplitude (P = 0.0044) without adverse hemodynamic consequences (P = 0.9991). Findings indicate that peptide and nonpeptide agonist activation of oxytocin receptors without V1aR cross-activation rescues fentanyl OIRD. Oxytocin receptor agonists could be lifesaving resuscitation agents that enhance rather than interrupt opioid analgesia. SIGNIFICANCE STATEMENT: Oxytocin receptor activation produces analgesia. Here, we demonstrate that activation by the US Food and Drug Administration-approved agonist oxytocin and the nonpeptide partial agonist WAY-267464 can each reverse fentanyl cardiorespiratory depression. Selective targeting of oxytocin receptors for resuscitation from opioid overdose, alone or in combination with an opioid antagonist, could eliminate or attenuate negative side effects associated with traditional opioid receptor antagonism.


Assuntos
Ocitocina , Receptores Opioides , Animais , Fentanila , Ratos , Receptores de Ocitocina
3.
J Biol Chem ; 292(21): 8762-8772, 2017 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-28381559

RESUMO

µ-Opioid receptor (MOR) agonists are often used to treat severe pain but can result in adverse side effects. To circumvent systemic side effects, targeting peripheral opioid receptors is an attractive alternative treatment for severe pain. Activation of the δ-opioid receptor (DOR) produces similar analgesia with reduced side effects. However, until primed by inflammation, peripheral DOR is analgesically incompetent, raising interest in the mechanism. We recently identified a novel role for G-protein-coupled receptor kinase 2 (GRK2) that renders DOR analgesically incompetent at the plasma membrane. However, the mechanism that maintains constitutive GRK2 association with DOR is unknown. Protein kinase A (PKA) phosphorylation of GRK2 at Ser-685 targets it to the plasma membrane. Protein kinase A-anchoring protein 79/150 (AKAP), residing at the plasma membrane in neurons, scaffolds PKA to target proteins to mediate downstream signal. Therefore, we sought to determine whether GRK2-mediated DOR desensitization is directed by PKA via AKAP scaffolding. Membrane fractions from cultured rat sensory neurons following AKAP siRNA transfection and from AKAP-knock-out mice had less PKA activity, GRK2 Ser-685 phosphorylation, and GRK2 plasma membrane targeting than controls. Site-directed mutagenesis revealed that GRK2 Ser-685 phosphorylation drives the association of GRK2 with plasma membrane-associated DOR. Moreover, overexpression studies with AKAP mutants indicated that impaired AKAP-mediated PKA scaffolding significantly reduces DOR-GRK2 association at the plasma membrane and consequently increases DOR activity in sensory neurons without a priming event. These findings suggest that AKAP scaffolds PKA to increase plasma membrane targeting and phosphorylation of GRK2 to maintain DOR analgesic incompetence in peripheral sensory neurons.


Assuntos
Membrana Celular/metabolismo , Receptores Opioides delta/metabolismo , Células Receptoras Sensoriais/metabolismo , Transdução de Sinais , Proteínas de Ancoragem à Quinase A/genética , Proteínas de Ancoragem à Quinase A/metabolismo , Animais , Bovinos , Membrana Celular/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Quinase 2 de Receptor Acoplado a Proteína G/genética , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Masculino , Camundongos , Fosforilação/genética , Ratos , Ratos Sprague-Dawley , Receptores Opioides delta/agonistas , Receptores Opioides delta/genética , Células Receptoras Sensoriais/patologia
4.
eNeuro ; 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35882549

RESUMO

There are currently no Food and Drug Administration (FDA)-approved delta opioid receptor (DOR)-selective agonists, despite having fewer side effects in rodents and non-human primates compared to traditional mu opioid receptor (MOR) therapeutics (Vanderah, 2010). Targeting peripheral receptors is an attractive strategy to reduce abuse potential. However, peripheral opioid receptors do not readily respond to agonists unless primed by inflammation, which would limit their efficacy in non-inflammatory pain patients (Stein et al., 1989). It was recently identified that G protein-coupled receptor kinase 2 (GRK2) maintains DOR incompetence in non-inflamed nociceptors (Brackley et al., 2016; Brackley et al., 2017). Here, we report that paroxetine, a selective serotonin reuptake inhibitor and potent GRK2 inhibitor (Thal et al., 2012), reduces chronic GRK2 association with membrane DOR, thereby enhancing peripheral DOR-mediated analgesic competence in the absence of inflammation. Interestingly, paroxetine's effects on GRK2 in vivo are limited to peripheral tissues in the male rat. The effects of paroxetine on DOR competence are notably antagonized by GRK2 overexpression. This is the first study to suggest that paroxetine induces peripheral DOR analgesic competence through a GRK2-dependent mechanism, improving analgesic efficacy in non-inflamed tissue. Because paroxetine targets the protein that governs peripheral opioid receptor responsiveness, and does so in the absence of inflammation, we propose that paroxetine may be suitable as a co-therapy with peripherally-restrictive doses of opioids to improve analgesic efficacy in non-inflammatory pain conditions.Significance StatementOpioids that target MOR represent the gold-standard for analgesic healthcare, despite widespread abuse potential and the ongoing opioid-epidemic. Work herein uncovers the therapeutic potential of targeting peripheral DOR for analgesic utility with an FDA-approved GRK2 inhibitor paroxetine to boost efficacy and reduce side effect profiles. Analgesic pain management targeting DOR with increased efficacy through adjuvant paroxetine treatment could reduce over-reliance on MOR agonist opioids for pain relief and usher in new options for analgesia.

5.
Sci Rep ; 7(1): 1842, 2017 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-28500286

RESUMO

Mechanical pain serves as a base clinical symptom for many of the world's most debilitating syndromes. Ion channels expressed by peripheral sensory neurons largely contribute to mechanical hypersensitivity. Transient Receptor Potential A 1 (TRPA1) is a ligand-gated ion channel that contributes to inflammatory mechanical hypersensitivity, yet little is known as to the post-translational mechanism behind its somatosensitization. Here, we utilize biochemical, electrophysiological, and behavioral measures to demonstrate that metabotropic glutamate receptor-induced sensitization of TRPA1 nociceptors stimulates targeted modification of the receptor. Type 1 mGluR5 activation increases TRPA1 receptor agonist sensitivity in an AKA-dependent manner. As a scaffolding protein for Protein Kinases A and C (PKA and PKC, respectively), AKAP facilitates phosphorylation and sensitization of TRPA1 in ex vivo sensory neuronal preparations. Furthermore, hyperalgesic priming of mechanical hypersensitivity requires both TRPA1 and AKAP. Collectively, these results identify a novel AKAP-mediated biochemical mechanism that increases TRPA1 sensitivity in peripheral sensory neurons, and likely contributes to persistent mechanical hypersensitivity.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Canal de Cátion TRPA1/metabolismo , Proteínas de Ancoragem à Quinase A/química , Proteínas de Ancoragem à Quinase A/genética , Animais , Células CHO , Cálcio/metabolismo , Cromatografia Líquida , Cricetulus , Masculino , Camundongos , Camundongos Knockout , Imagem Molecular , Fosforilação , Ratos , Receptores de Glutamato Metabotrópico/química , Canal de Cátion TRPA1/química , Canal de Cátion TRPA1/genética , Espectrometria de Massas em Tandem
6.
Cell Rep ; 16(10): 2686-2698, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27568556

RESUMO

Opioids remain the standard for analgesic care; however, adverse effects of systemic treatments contraindicate long-term administration. While most clinical opioids target mu opioid receptors (MOR), those that target the delta class (DOR) also demonstrate analgesic efficacy. Furthermore, peripherally restrictive opioids represent an attractive direction for analgesia. However, opioid receptors including DOR are analgesically incompetent in the absence of inflammation. Here, we report that G protein-coupled receptor kinase 2 (GRK2) naively associates with plasma membrane DOR in peripheral sensory neurons to inhibit analgesic agonist efficacy. This interaction prevents optimal Gß subunit association with the receptor, thereby reducing DOR activity. Importantly, bradykinin stimulates GRK2 movement away from DOR and onto Raf kinase inhibitory protein (RKIP). protein kinase C (PKC)-dependent RKIP phosphorylation induces GRK2 sequestration, restoring DOR functionality in sensory neurons. Together, these results expand the known function of GRK2, identifying a non-internalizing role to maintain peripheral DOR in an analgesically incompetent state.


Assuntos
Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Receptores Opioides delta/metabolismo , Analgésicos Opioides/farmacologia , Animais , Bradicinina/farmacologia , Proteínas de Ligação ao GTP/metabolismo , Masculino , Nociceptividade/efeitos dos fármacos , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Proteína Quinase C/metabolismo , Ratos Sprague-Dawley , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fosfolipases Tipo C/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA