Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
1.
Nature ; 629(8011): 410-416, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38632404

RESUMO

Bacteria have adapted to phage predation by evolving a vast assortment of defence systems1. Although anti-phage immunity genes can be identified using bioinformatic tools, the discovery of novel systems is restricted to the available prokaryotic sequence data2. Here, to overcome this limitation, we infected Escherichia coli carrying a soil metagenomic DNA library3 with the lytic coliphage T4 to isolate clones carrying protective genes. Following this approach, we identified Brig1, a DNA glycosylase that excises α-glucosyl-hydroxymethylcytosine nucleobases from the bacteriophage T4 genome to generate abasic sites and inhibit viral replication. Brig1 homologues that provide immunity against T-even phages are present in multiple phage defence loci across distinct clades of bacteria. Our study highlights the benefits of screening unsequenced DNA and reveals prokaryotic DNA glycosylases as important players in the bacteria-phage arms race.


Assuntos
Bactérias , Bacteriófago T4 , DNA Glicosilases , Bactérias/classificação , Bactérias/enzimologia , Bactérias/genética , Bactérias/imunologia , Bactérias/virologia , Bacteriófago T4/crescimento & desenvolvimento , Bacteriófago T4/imunologia , Bacteriófago T4/metabolismo , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , Escherichia coli/genética , Escherichia coli/virologia , Biblioteca Gênica , Metagenômica/métodos , Microbiologia do Solo , Replicação Viral
2.
Nature ; 623(7989): 1001-1008, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37968393

RESUMO

Cyclic oligonucleotide-based antiphage signalling systems (CBASS) protect prokaryotes from viral (phage) attack through the production of cyclic oligonucleotides, which activate effector proteins that trigger the death of the infected host1,2. How bacterial cyclases recognize phage infection is not known. Here we show that staphylococcal phages produce a structured RNA transcribed from the terminase subunit genes, termed CBASS-activating bacteriophage RNA (cabRNA), which binds to a positively charged surface of the CdnE03 cyclase and promotes the synthesis of the cyclic dinucleotide cGAMP to activate the CBASS immune response. Phages that escape the CBASS defence harbour mutations that lead to the generation of a longer form of the cabRNA that cannot activate CdnE03. As the mammalian cyclase OAS1 also binds viral double-stranded RNA during the interferon response, our results reveal a conserved mechanism for the activation of innate antiviral defence pathways.


Assuntos
Bactérias , Nucleotidiltransferases , RNA Viral , Fagos de Staphylococcus , Animais , 2',5'-Oligoadenilato Sintetase/metabolismo , Bactérias/enzimologia , Bactérias/imunologia , Evolução Molecular , Imunidade Inata , Nucleotidiltransferases/metabolismo , Oligonucleotídeos/imunologia , Oligonucleotídeos/metabolismo , RNA Viral/imunologia , RNA Viral/metabolismo , Transdução de Sinais/imunologia , Fagos de Staphylococcus/genética , Fagos de Staphylococcus/imunologia
3.
Nature ; 601(7894): 606-611, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34987225

RESUMO

Gram-negative bacteria are responsible for an increasing number of deaths caused by antibiotic-resistant infections1,2. The bacterial natural product colistin is considered the last line of defence against a number of Gram-negative pathogens. The recent global spread of the plasmid-borne mobilized colistin-resistance gene mcr-1 (phosphoethanolamine transferase) threatens the usefulness of colistin3. Bacteria-derived antibiotics often appear in nature as collections of similar structures that are encoded by evolutionarily related biosynthetic gene clusters. This structural diversity is, at least in part, expected to be a response to the development of natural resistance, which often mechanistically mimics clinical resistance. Here we propose that a solution to mcr-1-mediated resistance might have evolved among naturally occurring colistin congeners. Bioinformatic analysis of sequenced bacterial genomes identified a biosynthetic gene cluster that was predicted to encode a structurally divergent colistin congener. Chemical synthesis of this structure produced macolacin, which is active against Gram-negative pathogens expressing mcr-1 and intrinsically resistant pathogens with chromosomally encoded phosphoethanolamine transferase genes. These Gram-negative bacteria include extensively drug-resistant Acinetobacter baumannii and intrinsically colistin-resistant Neisseria gonorrhoeae, which, owing to a lack of effective treatment options, are considered among the highest level threat pathogens4. In a mouse neutropenic infection model, a biphenyl analogue of macolacin proved to be effective against extensively drug-resistant A. baumannii with colistin-resistance, thus providing a naturally inspired and easily produced therapeutic lead for overcoming colistin-resistant pathogens.


Assuntos
Antibacterianos , Colistina , Farmacorresistência Bacteriana , Bactérias Gram-Negativas , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/enzimologia , Acinetobacter baumannii/genética , Animais , Antibacterianos/farmacologia , Vias Biossintéticas/genética , Colistina/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Etanolaminas , Genes Bacterianos , Genoma Bacteriano , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/enzimologia , Bactérias Gram-Negativas/genética , Camundongos , Testes de Sensibilidade Microbiana , Família Multigênica , Neutropenia/tratamento farmacológico , Neutropenia/microbiologia , Plasmídeos , Transferases (Outros Grupos de Fosfato Substituídos)
5.
Mol Phylogenet Evol ; 191: 107977, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38008369

RESUMO

A highly endemic ant fauna is found in the arid regions of southern Africa, including species in the genus Ocymyrmex. This genus of ants has higher species richness in the western arid regions of southern Africa compared to tropical and subtropical parts of the continent. The processes that have produced these patterns of diversity and distribution of arid adapted ants in southern Africa have never been investigated. The diversification of many other taxa in the region has been associated with past climate fluctuations that occurred during the Miocene epoch. In this study, the nature and timing of historical processes that may have led to the diversification within Ocymyrmex were assessed. We hypothesized that past climate oscillations, characterized by long periods of aridification, have driven the current distribution of Ocymyrmex species that resulted in the highest species richness of the genus in the Deserts & xeric shrublands biome in southern Africa. Ninety-four Ocymyrmex worker specimens from Botswana, Kenya, Namibia, South Africa, Tanzania and Zimbabwe, representing 21 currently described species and six morphospecies, were included in a phylogenomic analysis. Phylogenies for the genus, based on next generation sequencing data from ultraconserved elements, were inferred using Maximum Likelihood, and a dating analysis was performed using secondary age estimates as calibration points. A distribution database of Ocymyrmex records was used to assign species ranges, which were then coded according to major biomes in southern Africa and used as input for biogeographical analysis. We explored the phylogenomic relationships of Ocymyrmex and analysed these within a biogeographical and paleoclimatic framework to disentangle the potential processes responsible for diversification in this group. Dating analyses estimated that the crown age of Ocymyrmex dates to the Oligocene, around 32 Ma. Diversification within this group occurred between the mid-Miocene (∼12.5 Ma) and Pleistocene (∼2 Ma). Our biogeographic analyses suggest that Ocymyrmex species originated in the south-western region of southern Africa, which is now part of the Deserts & xeric shrublands biome and diversified into eastern subtropical areas during the Pliocene. Paleoclimatic changes resulting in increased aridity during the Miocene likely drove the diversification of the genus Ocymyrmex. It is most likely that the diversification of grasslands, because of historical climate change, facilitated the diversification of these ants to the eastern parts of southern Africa when open grasslands replaced forests during the early Miocene.


Assuntos
Formigas , Animais , Filogenia , Formigas/genética , Ecossistema , Florestas , África Austral
6.
Cladistics ; 40(1): 34-63, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919831

RESUMO

Chalcidoidea are mostly parasitoid wasps that include as many as 500 000 estimated species. Capturing phylogenetic signal from such a massive radiation can be daunting. Chalcidoidea is an excellent example of a hyperdiverse group that has remained recalcitrant to phylogenetic resolution. We combined 1007 exons obtained with Anchored Hybrid Enrichment with 1048 ultra-conserved elements (UCEs) for 433 taxa including all extant families, >95% of all subfamilies, and 356 genera chosen to represent the vast diversity of the superfamily. Going back and forth between the molecular results and our collective knowledge of morphology and biology, we detected bias in the analyses that was driven by the saturation of nucleotide data. Our final results are based on a concatenated analysis of the least saturated exons and UCE datasets (2054 loci, 284 106 sites). Our analyses support an expected sister relationship with Mymarommatoidea. Seven previously recognized families were not monophyletic, so support for a new classification is discussed. Natural history in some cases would appear to be more informative than morphology, as illustrated by the elucidation of a clade of plant gall associates and a clade of taxa with planidial first-instar larvae. The phylogeny suggests a transition from smaller soft-bodied wasps to larger and more heavily sclerotized wasps, with egg parasitism as potentially ancestral for the entire superfamily. Deep divergences in Chalcidoidea coincide with an increase in insect families in the fossil record, and an early shift to phytophagy corresponds with the beginning of the "Angiosperm Terrestrial Revolution". Our dating analyses suggest a middle Jurassic origin of 174 Ma (167.3-180.5 Ma) and a crown age of 162.2 Ma (153.9-169.8 Ma) for Chalcidoidea. During the Cretaceous, Chalcidoidea may have undergone a rapid radiation in southern Gondwana with subsequent dispersals to the Northern Hemisphere. This scenario is discussed with regard to knowledge about the host taxa of chalcid wasps, their fossil record and Earth's palaeogeographic history.


Assuntos
Parasitos , Vespas , Animais , Vespas/genética , Filogenia , Evolução Biológica
8.
Angew Chem Int Ed Engl ; 63(17): e202317187, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38231130

RESUMO

DNA topoisomerases are attractive targets for anticancer agents. Dual topoisomerase I/II inhibitors are particularly appealing due to their reduced rates of resistance. A number of therapeutically relevant topoisomerase inhibitors are bacterial natural products. Mining the untapped chemical diversity encoded by soil microbiomes presents an opportunity to identify additional natural topoisomerase inhibitors. Here we couple metagenome mining, bioinformatic structure prediction algorithms, and chemical synthesis to produce the dual topoisomerase inhibitor tapcin. Tapcin is a mixed p-aminobenzoic acid (PABA)-thiazole with a rare tri-thiazole substructure and picomolar antiproliferative activity. Tapcin reduced colorectal adenocarcinoma HT-29 cell proliferation and tumor volume in mouse hollow fiber and xenograft models, respectively. In both studies it showed similar activity to the clinically used topoisomerase I inhibitor irinotecan. The study suggests that the interrogation of soil microbiomes using synthetic bioinformatic natural product methods has the potential to be a rewarding strategy for identifying potent, biomedically relevant, antiproliferative agents.


Assuntos
Antineoplásicos , Produtos Biológicos , Humanos , Camundongos , Animais , Inibidores da Topoisomerase I/farmacologia , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/farmacologia , DNA Topoisomerases Tipo I/metabolismo , Produtos Biológicos/farmacologia , DNA Topoisomerases Tipo II/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Biologia Computacional , Solo , Tiazóis , Linhagem Celular Tumoral
9.
Nature ; 549(7670): 48-53, 2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28854168

RESUMO

Commensal bacteria are believed to have important roles in human health. The mechanisms by which they affect mammalian physiology remain poorly understood, but bacterial metabolites are likely to be key components of host interactions. Here we use bioinformatics and synthetic biology to mine the human microbiota for N-acyl amides that interact with G-protein-coupled receptors (GPCRs). We found that N-acyl amide synthase genes are enriched in gastrointestinal bacteria and the lipids that they encode interact with GPCRs that regulate gastrointestinal tract physiology. Mouse and cell-based models demonstrate that commensal GPR119 agonists regulate metabolic hormones and glucose homeostasis as efficiently as human ligands, although future studies are needed to define their potential physiological role in humans. Our results suggest that chemical mimicry of eukaryotic signalling molecules may be common among commensal bacteria and that manipulation of microbiota genes encoding metabolites that elicit host cellular responses represents a possible small-molecule therapeutic modality (microbiome-biosynthetic gene therapy).


Assuntos
Amidas/metabolismo , Bactérias/metabolismo , Mimetismo Biológico , Trato Gastrointestinal/microbiologia , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Simbiose , Amidas/química , Animais , Bactérias/enzimologia , Bactérias/genética , Glicemia/metabolismo , Feminino , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal/metabolismo , Células HEK293 , Homeostase , Humanos , Ligantes , Masculino , Camundongos
10.
Mol Phylogenet Evol ; 173: 107452, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35307517

RESUMO

The parasitoid lifestyle is largely regarded as a key innovation that contributed to the evolutionary success and extreme species richness of the order Hymenoptera. Understanding the phylogenetic history of hyperdiverse parasitoid groups is a fundamental step in elucidating the evolution of biological traits linked to parasitoidism. We used a genomic-scale dataset based on ultra-conserved elements and the most comprehensive taxon sampling to date to estimate the evolutionary relationships of Braconidae, the second largest family of Hymenoptera. Based on our results, we propose Braconidae to comprise 41 extant subfamilies, confirmed a number of subfamilial placements and proposed subfamily-level taxonomic changes, notably the restoration of Trachypetinae stat. rev. and Masoninae stat. rev. as subfamilies of Braconidae, confirmation that Apozyx penyai Mason belongs in Braconidae placed in the subfamily Apozyginae and the recognition of Ichneutinae sensu stricto and Proteropinae as non-cyclostome subfamilies robustly supported in a phylogenetic context. The correlation between koinobiosis with endoparasitoidism and idiobiosis with ectoparasitoidism, long thought to be an important aspect in parasitoid life history, was formally tested and confirmed in a phylogenetic framework. Using ancestral reconstruction methods based on both parsimony and maximum likelihood, we suggest that the ancestor of the braconoid complex was a koinobiont endoparasitoid, as was that of the cyclostome sensu lato clade. Our results also provide strong evidence for one transition from endo- to ectoparasitoidism and three reversals back to endoparasitoidism within the cyclostome sensu stricto lineage. Transitions of koino- and idiobiosis were identical to those inferred for endo- versus ectoparasitoidism, except with one additional reversal back to koinobiosis in the small subfamily Rhysipolinae.


Assuntos
Himenópteros , Características de História de Vida , Vespas , Animais , Genômica , Himenópteros/genética , Filogenia , Vespas/genética
11.
Syst Biol ; 70(4): 803-821, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-33367855

RESUMO

Summarizing individual gene trees to species phylogenies using two-step coalescent methods is now a standard strategy in the field of phylogenomics. However, practical implementations of summary methods suffer from gene tree estimation error, which is caused by various biological and analytical factors. Greatly understudied is the choice of gene tree inference method and downstream effects on species tree estimation for empirical data sets. To better understand the impact of this method choice on gene and species tree accuracy, we compare gene trees estimated through four widely used programs under different model-selection criteria: PhyloBayes, MrBayes, IQ-Tree, and RAxML. We study their performance in the phylogenomic framework of $>$800 ultraconserved elements from the bee subfamily Nomiinae (Halictidae). Our taxon sampling focuses on the genus Pseudapis, a distinct lineage with diverse morphological features, but contentious morphology-based taxonomic classifications and no molecular phylogenetic guidance. We approximate topological accuracy of gene trees by assessing their ability to recover two uncontroversial, monophyletic groups, and compare branch lengths of individual trees using the stemminess metric (the relative length of internal branches). We further examine different strategies of removing uninformative loci and the collapsing of weakly supported nodes into polytomies. We then summarize gene trees with ASTRAL and compare resulting species phylogenies, including comparisons to concatenation-based estimates. Gene trees obtained with the reversible jump model search in MrBayes were most concordant on average and all Bayesian methods yielded gene trees with better stemminess values. The only gene tree estimation approach whose ASTRAL summary trees consistently produced the most likely correct topology, however, was IQ-Tree with automated model designation (ModelFinder program). We discuss these findings and provide practical advice on gene tree estimation for summary methods. Lastly, we establish the first phylogeny-informed classification for Pseudapis s. l. and map the distribution of distinct morphological features of the group. [ASTRAL; Bees; concordance; gene tree estimation error; IQ-Tree; MrBayes, Nomiinae; PhyloBayes; RAxML; phylogenomics; stemminess].


Assuntos
Modelos Genéticos , Animais , Teorema de Bayes , Abelhas/genética , Filogenia
12.
Bioorg Med Chem Lett ; 57: 128484, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34861348

RESUMO

Bacterial resistance threatens the utility of currently available antibiotics. Rifampicin, a cornerstone in the treatment of persistent Gram-positive infections, is prone to the development of resistance resulting from single point mutations in the antibiotic's target, RNA polymerase. One strategy to circumvent resistance is the use of 'hybrid' antibiotics consisting of two covalently linked antibiotic entities. These compounds generally have two distinct cellular targets, reducing the probability of resistance development and potentially providing simplified pharmacological properties compared to combination therapies using the individual antibiotics. Here we evaluate a series of semi-synthetic hybrid antibiotics formed by linking kanglemycin A (Kang A), a rifampicin analog, and a collection of fluoroquinolones. Kang A is a natural product antibiotic which contains a novel dimethyl succinic acid moiety that offers a new attachment point for the synthesis of hybrid antibiotics. We compare the activity of the Kang A hybrids generated via the acid attachment point to a series of hybrids linked at the compound's naphthoquinone ring system. Several hybrids exhibit activity against bacteria resistant to Kang A via the action of the partnered antibiotic, suggesting that the Kang scaffold may provide new avenues for generating antibiotics effective against drug-resistant infections.


Assuntos
Antibacterianos/farmacologia , Fluoroquinolonas/farmacologia , Rifamicinas/farmacologia , Antibacterianos/síntese química , Antibacterianos/toxicidade , Farmacorresistência Bacteriana/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Fluoroquinolonas/síntese química , Fluoroquinolonas/toxicidade , Células HEK293 , Humanos , Testes de Sensibilidade Microbiana , Rifamicinas/síntese química , Rifamicinas/toxicidade , Staphylococcus aureus/efeitos dos fármacos
13.
BMC Infect Dis ; 22(1): 637, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35864468

RESUMO

BACKGROUND: Airspace disease as seen on chest X-rays is an important point in triage for patients initially presenting to the emergency department with suspected COVID-19 infection. The purpose of this study is to evaluate a previously trained interpretable deep learning algorithm for the diagnosis and prognosis of COVID-19 pneumonia from chest X-rays obtained in the ED. METHODS: This retrospective study included 2456 (50% RT-PCR positive for COVID-19) adult patients who received both a chest X-ray and SARS-CoV-2 RT-PCR test from January 2020 to March of 2021 in the emergency department at a single U.S. INSTITUTION: A total of 2000 patients were included as an additional training cohort and 456 patients in the randomized internal holdout testing cohort for a previously trained Siemens AI-Radiology Companion deep learning convolutional neural network algorithm. Three cardiothoracic fellowship-trained radiologists systematically evaluated each chest X-ray and generated an airspace disease area-based severity score which was compared against the same score produced by artificial intelligence. The interobserver agreement, diagnostic accuracy, and predictive capability for inpatient outcomes were assessed. Principal statistical tests used in this study include both univariate and multivariate logistic regression. RESULTS: Overall ICC was 0.820 (95% CI 0.790-0.840). The diagnostic AUC for SARS-CoV-2 RT-PCR positivity was 0.890 (95% CI 0.861-0.920) for the neural network and 0.936 (95% CI 0.918-0.960) for radiologists. Airspace opacities score by AI alone predicted ICU admission (AUC = 0.870) and mortality (0.829) in all patients. Addition of age and BMI into a multivariate log model improved mortality prediction (AUC = 0.906). CONCLUSION: The deep learning algorithm provides an accurate and interpretable assessment of the disease burden in COVID-19 pneumonia on chest radiographs. The reported severity scores correlate with expert assessment and accurately predicts important clinical outcomes. The algorithm contributes additional prognostic information not currently incorporated into patient management.


Assuntos
COVID-19 , Aprendizado Profundo , Adulto , Inteligência Artificial , COVID-19/diagnóstico por imagem , Humanos , Prognóstico , Radiografia Torácica , Estudos Retrospectivos , SARS-CoV-2 , Tomografia Computadorizada por Raios X , Raios X
14.
Cladistics ; 37(1): 1-35, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-34478176

RESUMO

Recent technical advances combined with novel computational approaches have promised the acceleration of our understanding of the tree of life. However, when it comes to hyperdiverse and poorly known groups of invertebrates, studies are still scarce. As published phylogenies will be rarely challenged by future taxonomists, careful attention must be paid to potential analytical bias. We present the first molecular phylogenetic hypothesis for the family Chalcididae, a group of parasitoid wasps, with a representative sampling (144 ingroups and seven outgroups) that covers all described subfamilies and tribes, and 82% of the known genera. Analyses of 538 Ultra-Conserved Elements (UCEs) with supermatrix (RAxML and IQTREE) and gene tree reconciliation approaches (ASTRAL, ASTRID) resulted in highly supported topologies in overall agreement with morphology but reveal conflicting topologies for some of the deepest nodes. To resolve these conflicts, we explored the phylogenetic tree space with clustering and gene genealogy interrogation methods, analyzed marker and taxon properties that could bias inferences and performed a thorough morphological analysis (130 characters encoded for 40 taxa representative of the diversity). This joint analysis reveals that UCEs enable attainment of resolution between ancestry and convergent/divergent evolution when morphology is not informative enough, but also shows that a systematic exploration of bias with different analytical methods and a careful analysis of morphological features is required to prevent publication of artifactual results. We highlight a GC content bias for maximum-likelihood approaches, an artifactual mid-point rooting of the ASTRAL tree and a deleterious effect of high percentage of missing data (>85% missing UCEs) on gene tree reconciliation methods. Based on the results we propose a new classification of the family into eight subfamilies and ten tribes that lay the foundation for future studies on the evolutionary history of Chalcididae.


Assuntos
Sequência Conservada , Himenópteros/anatomia & histologia , Himenópteros/classificação , Himenópteros/genética , Filogenia , Animais , Composição de Bases , Biodiversidade , Evolução Biológica , Técnicas Genéticas , Funções Verossimilhança
15.
J Nat Prod ; 84(4): 1056-1066, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33621083

RESUMO

Tuberculosis (TB) remains one of the deadliest infectious diseases. Unfortunately, the development of antibiotic resistance threatens our current therapeutic arsenal, which has necessitated the discovery and development of novel antibiotics against drug-resistant Mycobacterium tuberculosis (Mtb). Cyclomarin A and rufomycin I are structurally related cyclic heptapeptides assembled by nonribosomal peptide synthetases (NRPSs), which show potent anti-Mtb activity with a new cellular target, the caseinolytic protein ClpC1. An NRPS adenylation domain survey using DNA extracted from ∼2000 ecologically diverse soils found low cyclomarin/rufomycin biosynthetic diversity. In this survey, a family of cyclomarin/rufomycin-like biosynthetic gene clusters (BGC) that encode metamarin, an uncommon cyclomarin congener with potent activity against both Mtb H37Rv and multidrug-resistant Mtb clinical isolates was identified. Metamarin effectively inhibits Mtb growth in murine macrophages and increases the activities of ClpC1 ATPase and the associated ClpC1/P1/P2 protease complex, thus causing cell death by uncontrolled protein degradation.


Assuntos
Metagenoma , Mycobacterium tuberculosis/efeitos dos fármacos , Oligopeptídeos/farmacologia , Microbiologia do Solo , Animais , Antituberculosos , Proteínas de Bactérias , Linhagem Celular , Proteínas de Choque Térmico , Macrófagos , Camundongos , Testes de Sensibilidade Microbiana , Estrutura Molecular
16.
BMC Biol ; 18(1): 89, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32703219

RESUMO

BACKGROUND: Polydnaviruses (PDVs) are mutualistic endogenous viruses inoculated by some lineages of parasitoid wasps into their hosts, where they facilitate successful wasp development. PDVs include the ichnoviruses and bracoviruses that originate from independent viral acquisitions in ichneumonid and braconid wasps respectively. PDV genomes are fully incorporated into the wasp genomes and consist of (1) genes involved in viral particle production, which derive from the viral ancestor and are not encapsidated, and (2) proviral segments harboring virulence genes, which are packaged into the viral particle. To help elucidating the mechanisms that have facilitated viral domestication in ichneumonid wasps, we analyzed the structure of the viral insertions by sequencing the whole genome of two ichnovirus-carrying wasp species, Hyposoter didymator and Campoletis sonorensis. RESULTS: Assemblies with long scaffold sizes allowed us to unravel the organization of the endogenous ichnovirus and revealed considerable dispersion of the viral loci within the wasp genomes. Proviral segments contained species-specific sets of genes and occupied distinct genomic locations in the two ichneumonid wasps. In contrast, viral machinery genes were organized in clusters showing highly conserved gene content and order, with some loci located in collinear wasp genomic regions. This genomic architecture clearly differs from the organization of PDVs in braconid wasps, in which proviral segments are clustered and viral machinery elements are more dispersed. CONCLUSIONS: The contrasting structures of the two types of ichnovirus genomic elements are consistent with their different functions: proviral segments are vehicles for virulence proteins expected to adapt according to different host defense systems, whereas the genes involved in virus particle production in the wasp are likely more stable and may reflect ancestral viral architecture. The distinct genomic architectures seen in ichnoviruses versus bracoviruses reveal different evolutionary trajectories that have led to virus domestication in the two wasp lineages.


Assuntos
Evolução Molecular , Genoma Viral , Interações entre Hospedeiro e Microrganismos , Polydnaviridae/genética , Vespas/virologia , Animais , Especificidade da Espécie , Sequenciamento Completo do Genoma
17.
Angew Chem Int Ed Engl ; 60(41): 22172-22177, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34355488

RESUMO

Natural products are a major source of new antibiotics. Here we utilize biosynthetic instructions contained within metagenome-derived congener biosynthetic gene clusters (BGCs) to guide the synthesis of improved antibiotic analogues. Albicidin and cystobactamid are the first members of a new class of broad-spectrum ρ-aminobenzoic acid (PABA)-based antibiotics. Our search for PABA-specific adenylation domain sequences in soil metagenomes revealed that BGCs in this family are common in nature. Twelve BGCs that were bio-informatically predicted to encode six new congeners were recovered from soil metagenomic libraries. Synthesis of these six predicted structures led to the identification of potent antibiotics with changes in their spectrum of activity and the ability to circumvent resistance conferred by endopeptidase cleavage enzymes.


Assuntos
Ácido 4-Aminobenzoico/síntese química , Antibacterianos/síntese química , Produtos Biológicos/síntese química , Ácido 4-Aminobenzoico/química , Antibacterianos/química , Produtos Biológicos/química , Estrutura Molecular , Compostos Orgânicos/síntese química , Compostos Orgânicos/química , Xanthomonas/química
18.
BMC Evol Biol ; 20(1): 155, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33228574

RESUMO

BACKGROUND: Parasitoidism, a specialized life strategy in which a parasite eventually kills its host, is frequently found within the insect order Hymenoptera (wasps, ants and bees). A parasitoid lifestyle is one of two dominant life strategies within the hymenopteran superfamily Cynipoidea, with the other being an unusual plant-feeding behavior known as galling. Less commonly, cynipoid wasps exhibit inquilinism, a strategy where some species have adapted to usurp other species' galls instead of inducing their own. Using a phylogenomic data set of ultraconserved elements from nearly all lineages of Cynipoidea, we here generate a robust phylogenetic framework and timescale to understand cynipoid systematics and the evolution of these life histories. RESULTS: Our reconstructed evolutionary history for Cynipoidea differs considerably from previous hypotheses. Rooting our analyses with non-cynipoid outgroups, the Paraulacini, a group of inquilines, emerged as sister-group to the rest of Cynipoidea, rendering the gall wasp family Cynipidae paraphyletic. The families Ibaliidae and Liopteridae, long considered archaic and early-branching parasitoid lineages, were found nested well within the Cynipoidea as sister-group to the parasitoid Figitidae. Cynipoidea originated in the early Jurassic around 190 Ma. Either inquilinism or parasitoidism is suggested as the ancestral and dominant strategy throughout the early evolution of cynipoids, depending on whether a simple (three states: parasitoidism, inquilinism and galling) or more complex (seven states: parasitoidism, inquilinism and galling split by host use) model is employed. CONCLUSIONS: Our study has significant impact on understanding cynipoid evolution and highlights the importance of adequate outgroup sampling. We discuss the evolutionary timescale of the superfamily in relation to their insect hosts and host plants, and outline how phytophagous galling behavior may have evolved from entomophagous, parasitoid cynipoids. Our study has established the framework for further physiological and comparative genomic work between gall-making, inquiline and parasitoid lineages, which could also have significant implications for the evolution of diverse life histories in other Hymenoptera.


Assuntos
Interações Hospedeiro-Parasita , Filogenia , Vespas , Animais , Plantas/parasitologia , Vespas/genética
19.
J Am Chem Soc ; 142(33): 14158-14168, 2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32697091

RESUMO

Bacterial natural products have inspired the development of numerous antibiotics in use today. As resistance to existing antibiotics has become more prevalent, new antibiotic lead structures and activities are desperately needed. An increasing number of natural product biosynthetic gene clusters, to which no known molecules can be assigned, are found in genome and metagenome sequencing data. Here we access structural information encoded in this underexploited resource using a synthetic-bioinformatic natural product (syn-BNP) approach, which relies on bioinformatic algorithms followed by chemical synthesis to predict and then produce small molecules inspired by biosynthetic gene clusters. In total, 157 syn-BNP cyclic peptides inspired by 96 nonribosomal peptide synthetase gene clusters were synthesized and screened for antibacterial activity. This yielded nine antibiotics with activities against ESKAPE pathogens as well as Mycobacterium tuberculosis. Not only are antibiotic-resistant pathogens susceptible to many of these syn-BNP antibiotics, but they were also unable to develop resistance to these antibiotics in laboratory experiments. Characterized modes of action for these antibiotics include cell lysis, membrane depolarization, inhibition of cell wall biosynthesis, and ClpP protease dysregulation. Increasingly refined syn-BNP-based explorations of biosynthetic gene clusters should allow for more rapid identification of evolutionarily inspired bioactive small molecules, in particular antibiotics with diverse mechanism of actions that could help confront the imminent crisis of antimicrobial resistance.


Assuntos
Antibacterianos/farmacologia , Produtos Biológicos/farmacologia , Biologia Computacional , Mycobacterium tuberculosis/efeitos dos fármacos , Algoritmos , Antibacterianos/síntese química , Antibacterianos/química , Produtos Biológicos/síntese química , Produtos Biológicos/química , Testes de Sensibilidade Microbiana , Estrutura Molecular
20.
Proc Biol Sci ; 287(1928): 20200480, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32486978

RESUMO

The Neotropical realm harbours unparalleled species richness and hence has challenged biologists to explain the cause of its high biotic diversity. Empirical studies to shed light on the processes underlying biological diversification in the Neotropics are focused mainly on vertebrates and plants, with little attention to the hyperdiverse insect fauna. Here, we use phylogenomic data from ultraconserved element (UCE) loci to reconstruct for the first time the evolutionary history of Neotropical swarm-founding social wasps (Hymenoptera, Vespidae, Epiponini). Using maximum likelihood, Bayesian, and species tree approaches we recovered a highly resolved phylogeny for epiponine wasps. Additionally, we estimated divergence dates, diversification rates, and the biogeographic history for these insects in order to test whether the group followed a 'museum' (speciation events occurred gradually over many millions of years) or 'cradle' (lineages evolved rapidly over a short time period) model of diversification. The origin of many genera and all sampled extant Epiponini species occurred during the Miocene and Plio-Pleistocene. Moreover, we detected no major shifts in the estimated diversification rate during the evolutionary history of Epiponini, suggesting a relatively gradual accumulation of lineages with low extinction rates. Several lines of evidence suggest that the Amazonian region played a major role in the evolution of Epiponini wasps. This spatio-temporal diversification pattern, most likely concurrent with climatic and landscape changes in the Neotropics during the Miocene and Pliocene, establishes the Amazonian region as the major source of Neotropical swarm-founding social wasp diversity.


Assuntos
Biodiversidade , Vespas , Animais , Teorema de Bayes , Brasil , Filogenia , Filogeografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA