Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Molecules ; 27(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35566171

RESUMO

Two analogues of tolcapone where the nitrocatechol group has been replaced by a 1-hydroxy-2(1H)-pyridinone have been designed and synthesised. These compounds are expected to have a dual mode of action both beneficial against Parkinson's disease: they are designed to be inhibitors of catechol O-methyl transferase, which contribute to the reduction of dopamine in the brain, and to protect neurons against oxidative damage. To assess whether these compounds are worthy of biological assessment to demonstrate these effects, measurement of their pKa and stability constants for Fe(III), in silico modelling of their potential to inhibit COMT and blood-brain barrier scoring were performed. These results demonstrate that the compounds may indeed have the desired properties, indicating they are indeed promising candidates for further evaluation.


Assuntos
Inibidores de Catecol O-Metiltransferase , Doença de Parkinson , Benzofenonas , Catecol O-Metiltransferase , Inibidores de Catecol O-Metiltransferase/farmacologia , Catecóis/farmacologia , Quelantes , Inibidores Enzimáticos/farmacologia , Compostos Férricos , Humanos , Nitrofenóis , Doença de Parkinson/tratamento farmacológico , Piridonas
2.
Inorg Chem ; 60(4): 2149-2159, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33522798

RESUMO

The development of actinide decorporation agents with high complexation affinity, high tissue specificity, and low biological toxicity is of vital importance for the sustained and healthy development of nuclear energy. After accidental actinide intake, sequestration by chelation therapy to reduce acute damage is considered as the most effective method. In this work, a series of bis- and tetra-phosphonated pyridine ligands have been designed, synthesized, and characterized for uranyl (UO22+) decorporation. Owing to the absorption of the ligand and the luminescence of the uranyl ion, UV-vis spectroscopy and time-resolved laser-induced fluorescence spectroscopy (TRLFS) were used to probe in situ complexation and structure variation of the complexes formed by the ligands with uranyl. Density functional theory (DFT) calculations and X-ray absorption fine structure (XAFS) spectroscopy on uranyl-ligand complexes revealed the coordination geometry around the uranyl center at pH 3 and 7.4. High affinity constants (log K ∼17) toward the uranyl ion were determined by displacement titration. A preliminary in vitro chelation study proves that bis-phosphonated pyridine ligands can remove uranium from calmodulin (CaM) at a low dose and in the short term, which supports further uranyl decorporation applications of these ligands.

3.
Bioorg Chem ; 95: 103465, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31855824

RESUMO

Resistance of pathogens to antimicrobials is a major current healthcare concern. In a series of linked studies, we have investigated synthetic iron chelators based on hydroxy-pyridinone ligands as novel bacteriostatic agents. Herein we describe our synthesis of several useful building blocks based on the 1-hydroxy-2(1H)-pyridinone moiety, including a novel formyl derivative, which were combined with a tris(2-aminoethyl)amine core to obtain a series of new high-affinity hexadentate Fe(III) chelators. The design principle examined by this series is the size and flexibility of the linker between the core and the metal ligands. Measurement of the pKa and stability constants (Fe3+ and Cu2+) of representative coordinating groups was performed to help rationalise the biological activity of the chelators. The novel chelators were tested on a panel of representative microorganisms with some effectively inhibiting microbial growth. We demonstrate that the nature and position of the linker between the hydroxypyridinone and the tris(2-aminoethyl)amine core has considerable impact upon microbial growth inhibition and that both amide or amine linkages can give efficacious chelators.


Assuntos
Aminas/farmacologia , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Quelantes de Ferro/farmacologia , Piridonas/farmacologia , Acinetobacter baumannii/efeitos dos fármacos , Aminas/química , Antibacterianos/síntese química , Antibacterianos/química , Antifúngicos/síntese química , Antifúngicos/química , Bacillus subtilis/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Relação Dose-Resposta a Droga , Quelantes de Ferro/síntese química , Quelantes de Ferro/química , Klebsiella pneumoniae/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Pseudomonas aeruginosa/efeitos dos fármacos , Piridonas/química , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade
4.
Arch Toxicol ; 94(3): 813-831, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32078022

RESUMO

Ubiquitin proteasome system (UPS) impairment, excessive cellular oxidative stress, and iron dyshomeostasis are key to substantia nigra dopaminergic neuronal degeneration in Parkinson's disease (PD); however, a link between these features remains unconfirmed. Using the proteasome inhibitor lactacystin we confirm that nigral injury via UPS impairment disrupts iron homeostasis, in turn increasing oxidative stress and promoting protein aggregation. We demonstrate the neuroprotective potential of two novel 1-hydroxy-2(1H)-pyridinone (1,2-HOPO) iron chelators, compounds C6 and C9, against lactacystin-induced cell death. We demonstrate that this cellular preservation relates to the compounds' iron chelating capabilities and subsequent reduced capacity of iron to form reactive oxygen species (ROS), where we also show that the ligands act as antioxidant agents. Our results also demonstrate the ability of C6 and C9 to reduce intracellular lactacystin-induced α-synuclein burden. Stability constant measurements confirmed a high affinity of C6 and C9 for Fe3+ and display a 3:1 HOPO:Fe3+ complex formation at physiological pH. Reducing iron reactivity could prevent the demise of nigral dopaminergic neurons. We provide evidence that the lactacystin model presents with several neuropathological hallmarks of PD related to iron dyshomeostasis and that the novel chelating compounds C6 and C9 can protect against lactacystin-related neurotoxicity.


Assuntos
Quelantes de Ferro/farmacologia , Fármacos Neuroprotetores/metabolismo , Doença de Parkinson/metabolismo , Ubiquitina/metabolismo , Acetilcisteína/análogos & derivados , Animais , Dopamina , Neurônios Dopaminérgicos , Humanos , Ferro , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma , Substância Negra , alfa-Sinucleína
5.
Arch Toxicol ; 94(9): 3105-3123, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32607613

RESUMO

While the etiology of non-familial Parkinson's disease (PD) remains unclear, there is evidence that increased levels of tissue iron may be a contributing factor. Moreover, exposure to some environmental toxicants is considered an additional risk factor. Therefore, brain-targeted iron chelators are of interest as antidotes for poisoning with dopaminergic toxicants, and as potential treatment of PD. We, therefore, designed a series of small molecules with high affinity for ferric iron and containing structural elements to allow their transport to the brain via the neutral amino acid transporter, LAT1 (SLC7A5). Five candidate molecules were synthesized and initially characterized for protection from ferroptosis in human neurons. The promising hydroxypyridinone SK4 was characterized further. Selective iron chelation within the physiological range of pH values and uptake by LAT1 were confirmed. Concentrations of 10-20 µM blocked neurite loss and cell demise triggered by the parkinsonian neurotoxicants, methyl-phenyl-pyridinium (MPP+) and 6-hydroxydopamine (6-OHDA) in human dopaminergic neuronal cultures (LUHMES cells). Rescue was also observed when chelators were given after the toxicant. SK4 derivatives that either lacked LAT1 affinity or had reduced iron chelation potency showed altered activity in our assay panel, as expected. Thus, an iron chelator was developed that revealed neuroprotective properties, as assessed in several models. The data strongly support the role of iron in dopaminergic neurotoxicity and suggests further exploration of the proposed design strategy for improving brain iron chelation.


Assuntos
Neurônios Dopaminérgicos/fisiologia , Substâncias Perigosas/química , Substâncias Perigosas/toxicidade , Fármacos Neuroprotetores/química , Dopamina/metabolismo , Humanos , Quelantes de Ferro
6.
Inorg Chem ; 56(19): 11738-11752, 2017 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-28915014

RESUMO

Here we present the synthesis and characterization of a new bispidine (3,7-diazabicyclo[3.3.1]nonane) ligand with N-methanephosphonate substituents (L2). Its physicochemical properties in water, as well as those of the corresponding Cu(II) and Zn(II) complexes, have been evaluated by using UV-visible absorption spectroscopy, potentiometry, 1H and 31P NMR, and cyclic voltammetry. Radiolabeling experiments with 64CuII have been carried out, showing excellent radiolabeling properties. Quantitative complexation was achieved within 60 min under stoichiometric conditions, at room temperature and in the nanomolar concentration range. It was also demonstrated that the complexation occurred below pH 2. Properties have been compared to those of the analogue bispidol bearing a N-methanecarboxylate substituent (L1). Although both systems meet the required criteria to be used as new chelator for 64/67Cu in terms of the kinetics of formation, thermodynamic stability, selectivity for Cu(II), and kinetic inertness regarding redox- or acid-assisted decomplexation processes, substitution of the carboxylic acid function by the phosphonic moiety is responsible for a significant increase in the thermodynamic stability of the Cu(II) complex (+2 log units for pCu) and also leads to an increase in the radiochemical yields with 64CuII which is quantitative for L2.

7.
Inorg Chem ; 54(9): 4431-44, 2015 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-25866934

RESUMO

A family of 2,4-pyridyl-disubstituted bispidol derivatives bearing methylene carboxylic acid ethyl esters (L1-L3), methylene carboxylic acids (L4 and L5), or methylenethiophene (L6) groups were synthesized. In water, all ligands form rigid 1:1 complexes in the presence of Zn(II) in which the bicycle adopts a chair-chair conformation (cis isomer), as observed by (1)H NMR and, in the case of ligand L1, by an X-ray diffraction crystal structure. Interestingly, addition of Zn(II) ions on ligand L1 induces a metal-mediated selective hydrolysis of the ethyl esters. This selective hydrolysis was not observed upon addition of other cations such as Na(+), Mg(+), and Ca(2+). Reduction of the central ketone was achieved to prevent ring opening via retro Diels-Alder reactions and to afford highly stable and water-soluble ligands (L4, L5, L6). The complexation properties of L4 and L6 were studied in solution, with a particular interest for ligand L4. Fast complexation occurs in strongly acidic media (pH = 1), with a high affinity toward Cu(II) (log KCuL4 = 19.2(3), pCu = 17.0 at pH 7.4, pCu = -log[Cufree], [Cu] = 1 × 10(-6) M, [L] = 1 × 10(-5) M) and high selectivity versus Co(II), Ni(II), and Zn(II), as shown by the values of the binding constants obtained from potentiometric and spectrophotometric titrations. Reversible redox potential with E1/2 = -430 mV (vs normal hydrogen electrode) was measured. The complex was found to be fairly inert from acid-assisted dissociation experiments in 5 M HClO4 (t1/2 = 110 d at 25 °C).


Assuntos
Ácidos Carboxílicos/química , Complexos de Coordenação/síntese química , Cobre/química , Tiofenos/química , Radioisótopos de Cobre , Cristalografia por Raios X , Reação de Cicloadição , Humanos , Cinética , Ligantes , Espectroscopia de Ressonância Magnética , Conformação Molecular , Medicina Nuclear/instrumentação , Medicina Nuclear/métodos , Potenciometria , Compostos Radiofarmacêuticos , Zinco/química
8.
Dalton Trans ; 53(8): 3690-3701, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38295371

RESUMO

This study presents the adsorption properties of a bioinspired grafted mesoporous silica material and the competitive effects between Cd(II) or Cu(II) and Pb(II) during the adsorption process. Glutathione, a natural antioxidant known for its metal binding properties, has been successfully grafted to SBA-15 mesoporous silica and the optimum adsorption parameters were determined. This original and multidisciplinary approach combines classical adsorption studies with thermodynamic investigations to understand the adsorption behavior of Cd(II), Cu(II) and Pb(II) on this material. To this end, isothermal titration calorimetry (ITC) has been used to elucidate the mechanisms of single-metal and two-metal adsorption. The results showed affinity in the order Pb(II) > Cu(II) > Cd(II) in single metal systems. Cd(II) adsorption relied mainly on physical contributions while Cu(II) and Pb(II) adsorption was shown to be chemically driven. Two-metal systems highlighted that Cd(II) and Pb(II) are adsorbed on the same coordination sites, whereas Cu(II) and Pb(II) are adsorbed on different sites. The material showed good selectivity and encouraging results were obtained on real effluents.

9.
Dalton Trans ; 51(9): 3590-3603, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35147617

RESUMO

Iron dysregulation, dopamine depletion, cellular oxidative stress and α-synuclein protein mis-folding are key neuronal pathological features seen in the progression of Parkinson's disease. Iron chelators endowed with one or more therapeutic modes of action have long been suggested as disease modifying therapies for its treatment. In this study, novel 1-hydroxypyrazin-2(1H)-one iron chelators were synthesized and their physicochemical properties, iron chelation abilities, antioxidant capacities and neuroprotective effects in a cell culture model of Parkinson's disease were evaluated. Physicochemical properties (log ß, log D7.4, pL0.5) suggest that these ligands have a poorer ability to penetrate cell membranes and form weaker iron complexes than the closely related 1-hydroxypyridin-2(1H)-ones. Despite this, we show that levels of neuroprotection provided by these ligands against the catecholaminergic neurotoxin 6-hydroxydopamine in vitro were comparable to those seen previously with the 1-hydroxypyridin-2(1H)-ones and the clinically used iron chelator Deferiprone, with two of the ligands restoring cell viability to ≥89% compared to controls. Two of the ligands were endowed with additional phenol moieties in an attempt to derive multifunctional chelators with dual iron chelation/antioxidant activity. However, levels of neuroprotection with these ligands were no greater than ligands lacking this moiety, suggesting the neuroprotective properties of these ligands are due primarily to chelation and passivation of intracellular labile iron, preventing the generation of free radicals and reactive oxygen species that otherwise lead to the neuronal cell death seen in Parkinson's disease.


Assuntos
Doença de Parkinson
10.
Inorg Chem ; 48(8): 3743-54, 2009 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-19296613

RESUMO

Accessible and hindered phenanthroline-strapped Zn(II) porphyrin receptors exhibited suitable topography tailored to strongly and selectively bind N(1)-unsubstituted imidazoles and imidazoles appended to free-base porphyrins. Distal binding was clearly driven by the formation of strong bifurcated hydrogen bonds with the phenanthroline unit of the receptors. An extensive physicochemical study emphasized the influence of bulkiness of the substrate and of the porphyrin receptor on the binding and self-assembly mechanism. Knowledge of the corresponding spectroscopic, thermodynamic, and kinetic data were of fundamental importance to elucidate and to model the photoinduced properties which occur within the self-assembled porphyrin dyads.


Assuntos
Metaloporfirinas/síntese química , Porfirinas/química , Físico-Química , Ligação de Hidrogênio , Imidazóis/química , Cinética , Ligantes , Metaloporfirinas/química , Estrutura Molecular , Fenantrolinas/química , Fotoquímica , Espectrofotometria Ultravioleta , Zinco/química
11.
ACS Appl Mater Interfaces ; 9(46): 40006-40016, 2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29035507

RESUMO

Drug-loaded magnetic nanoparticles were synthesized and used for the sequential delivery of the antiresorptive agent zoledronic acid (Zol) and the cytotoxic drug doxorubicin (Dox) to breast cancer cells (MCF-7). Zol was attached to bare iron oxide nanoparticles (IONPs) via phosphonate coordination to form Z-NPs. The unbound imidazole of Zol was then used to complex the organic macrocycle CB[7] to obtain CZ-NPs. Dox was complexed to the CZ-NPs to form the fully loaded particles (DCZ-NPs), which were stable in solution at 37 °C and physiological pH (7.4). Fluorescence spectroscopy established that Dox is released in solution from DCZ-NPs suddenly (i) when the particles are subjected to magnetically induced heating to 42 °C at low pH (5.0) and (ii) in the presence of glutathione (GSH). Mass spectrometry indicated that Zol is released slowly in solution at low pH after Dox release. Magnetic measurements with a magnetic reader revealed that DCZ-NPs are internalized preferentially by MCF-7 cells versus nonmalignant cells (HEK293). Zol and Dox acted synergistically when delivered by the particles. DCZ-NPs caused a decrease in the viability of MCF-7 cells that was greater than the net decrease caused when the drugs were added to the cells individually at concentrations equivalent to those delivered by the particles. MCF-7 cells were treated with DCZ-NPs and subjected to an alternating magnetic field (AMF) which, with the nanoparticles present, raised the temperature of the cells and triggered the intracellular release of Dox, as indicated by fluorescence activated cell sorting (FACS). The cytotoxic effects of the DCZ-NPs on MCF-7 cells were enhanced 10-fold by AMF-induced heating. DCZ-NPs were also able to completely inhibit MCF-7 cell adhesion and invasion in vitro, indicating the potential of the particles to act as antimetastatic agents. Together these results demonstrate that DCZ-NPs warrant development as a system for combined chemo- and thermo-therapeutic treatment of cancer.


Assuntos
Neoplasias da Mama , Doxorrubicina , Sistemas de Liberação de Medicamentos , Compostos Férricos , Células HEK293 , Humanos , Células MCF-7 , Nanopartículas Metálicas , Ácido Zoledrônico
12.
Dalton Trans ; 43(24): 9070-80, 2014 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-24788186

RESUMO

The synthesis of ligand L(T)H8, based on a thiophene framework containing two bis(aminomethyldiphosphonate) functions in the ortho position to the central sulfur atom, is described, together with the characterization of the intermediate compounds. The physico-chemical properties of the ligand were first studied by means of potentiometry and UV-Vis absorption spectrophotometric titrations to determine its pK values. Six successive equilibrium constants were determined in aqueous solutions. The same means were then used to quantify the interactions of the ligand with Ni(II), Cu(II) and Zn(II). Following the conventional Irving-Williams trend, L(T) was shown to have the highest affinity towards Cu(II) (log K(CuL(T)) = 16.11(3)), while Zn(II) and Ni(II) showed similar values (log K(ML(T)) = 10.81(8) and 10.9(1), respectively), revealing a large selectivity of L(T) toward Cu(II). Based on a combination of UV-Vis absorption spectroscopy and EPR measurements as a function of pH, along with DFT calculations, the coordination behavior of the hard phosphonate, medium amino and soft thiophene entities are questioned regarding their coordination to the Cu atom.


Assuntos
Organofosfonatos/química , Tiofenos/química , Aminas/química , Quelantes/química , Cobre/química , Espectroscopia de Ressonância de Spin Eletrônica , Concentração de Íons de Hidrogênio , Íons , Ligantes , Teste de Materiais , Modelos Químicos , Níquel/química , Fosforilação , Potenciometria , Piridinas/química , Solventes/química , Espectrofotometria , Espectrofotometria Ultravioleta , Termodinâmica , Água/química , Zinco/química
13.
Dalton Trans ; 41(9): 2820-34, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22261733

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen, synthesizing two major siderophores, pyoverdine (Pvd) and pyochelin (Pch), to cover its needs in iron(III). If the high affinity and specificity of Pvd toward iron(III) (pFe = 27.0) was well described in the literature, the physicochemical and coordination properties of Pch toward biologically relevant metals (Fe(III), Cu(II) or Zn(II)) have been only scarcely investigated. We report a thorough physico-chemical investigation of Pch (potentiometry, spectrophotometries, ESI/MS) that highlighted its moderate but significantly higher affinity for Fe(3+) (pFe = 16.0 at p[H] 7.4) than reported previously. We also demonstrated that Pch strongly chelates divalent metals such as Zn(II) (pZn = 11.8 at p[H] 7.4) and Cu(II) (pCu = 14.9 at p[H] 7.4) and forms predominantly 1 : 2 (M(2+)/Pch) complexes. Kinetic studies revealed that the formation of the ferric Pch complexes proceeds through a Eigen-Wilkins dissociative ligand interchange mechanism involving two protonated species of Pch and the Fe(OH)(2+) species of Fe(III). Our physico-chemical parameters supports the previous biochemical studies which proposed that siderophores are not only devoted to iron(III) shuttling but most likely display other specific biological role in the subtle metals homeostasis in microorganisms. This work also represents a step toward deciphering the role of siderophores throughout evolution.


Assuntos
Quelantes/química , Cobre/química , Ferro/química , Fenóis/química , Tiazóis/química , Zinco/química , Cinética , Potenciometria , Pseudomonas aeruginosa , Espectrometria de Massas por Ionização por Electrospray , Espectrofotometria
14.
J Inorg Biochem ; 112: 59-67, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22551986

RESUMO

A series of five new hexadentate tris-hydroxamate ligands based on a d-galactose or a glycerol scaffold have been synthesized. Protonation and ferric complex formation constants have been determined from solution studies by potentiometric and spectrophotometric titrations. All ligands form 1:1 Fe:L complexes. The calculated pFe values at pH 7.4 span over the range 19.2-23.0 depending on the scaffold and on the length of the spacers between hydroxamate and central scaffold and on the N-methyl substitution. This new kind of artificial siderophores based on a glycoscaffold is of interest as it opens up an easy way to modulate the pFe.


Assuntos
Complexos de Coordenação/química , Compostos Férricos/química , Galactose/análogos & derivados , Glicerol/análogos & derivados , Ácidos Hidroxâmicos/química , Modelos Químicos , Sideróforos/química , Galactose/química , Glicerol/química , Concentração de Íons de Hidrogênio , Ácidos Hidroxâmicos/síntese química , Quelantes de Ferro/síntese química , Quelantes de Ferro/química , Ligantes , Estrutura Molecular , Potenciometria , Prótons , Sideróforos/síntese química , Espectrofotometria
15.
Chem Commun (Camb) ; 46(22): 3958-60, 2010 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-20445919

RESUMO

A new aza-15-crown-5 ether-appended iridium complex was synthesized and showed promising on-off selective emission-triggering by inhibition of photoinduced electron transfer (PET) upon binding of Mg(2+).


Assuntos
Complexos de Coordenação/química , Éteres de Coroa/química , Irídio/química , Magnésio/química , Transporte de Elétrons , Espectrofotometria Ultravioleta
16.
Chemistry ; 14(12): 3680-6, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18293349

RESUMO

Amphiphilic catechol-type iron chelators were studied with the aim of mimicking the properties of marine bacterial siderophores. The Fe(III) complexation constants and aqueous solution speciation of L(S10), a sulfonated catechol unit that has a C(10) lipophilic carbon chain connected by an amide linkage, were determined by spectrophotometric titration. The calculated value of pFe3+ is 18.1 at pH 7.4. Cryogenic transmission electron microscopy showed that the tris(catecholate) ferric complex formed at physiological pH initially assembles into micelles, in which the catecholate-iron units stay on the exterior of the micelle. The average diameter of these micelles was estimated to be 4.2 nm. The micelles then slowly rearrange into clusters of different sizes, which leads to the formation of unilamellar and bilamellar vesicles. The reorganization processes are comparable to those observed by Butler et al. for the marinobactin siderophores produced by marine bacteria, but in contrast to the marinobactins, vesicles of the Fe3+-L(S10) complex form without an excess of iron relative to ligand concentration. The time-dependent micelle-to-vesicle transition is discussed herein.


Assuntos
Catecóis/química , Quelantes/síntese química , Compostos Férricos/síntese química , Marinobacter/química , Sideróforos/química , Materiais Biomiméticos/síntese química , Materiais Biomiméticos/química , Quelantes/química , Compostos Férricos/química , Concentração de Íons de Hidrogênio , Ligantes , Estrutura Molecular , Tamanho da Partícula
17.
Inorg Chem ; 46(23): 9534-6, 2007 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-17929917

RESUMO

Imidazole-porphyrin coordination has become an important tool in the design of self-assembled materials. A combination of spectrophotometric and stopped-flow techniques has been used to gain insight into the control of imidazole binding in the distal pocket of phenanthroline-strapped porphyrins. The binding studies of a variety of imidazole substrates in combination with both hindered and accessible receptors have permitted the determination of the thermodynamic and kinetic parameters associated with the imidazole binding.


Assuntos
Imidazóis/química , Metaloporfirinas/química , Receptores de Superfície Celular/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA