Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(16)2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32823847

RESUMO

This study presents a first assessment of the Top-Of-Atmosphere (TOA) radiances measured in the visible and near-infrared (VNIR) wavelengths from PRISMA (PRecursore IperSpettrale della Missione Applicativa), the new hyperspectral satellite sensor of the Italian Space Agency in orbit since March 2019. In particular, the radiometrically calibrated PRISMA Level 1 TOA radiances were compared to the TOA radiances simulated with a radiative transfer code, starting from in situ measurements of water reflectance. In situ data were obtained from a set of fixed position autonomous radiometers covering a wide range of water types, encompassing coastal and inland waters. A total of nine match-ups between PRISMA and in situ measurements distributed from July 2019 to June 2020 were analysed. Recognising the role of Sentinel-2 for inland and coastal waters applications, the TOA radiances measured from concurrent Sentinel-2 observations were added to the comparison. The results overall demonstrated that PRISMA VNIR sensor is providing TOA radiances with the same magnitude and shape of those in situ simulated (spectral angle difference, SA, between 0.80 and 3.39; root mean square difference, RMSD, between 0.98 and 4.76 [mW m-2 sr-1 nm-1]), with slightly larger differences at shorter wavelengths. The PRISMA TOA radiances were also found very similar to Sentinel-2 data (RMSD < 3.78 [mW m-2 sr-1 nm-1]), and encourage a synergic use of both sensors for aquatic applications. Further analyses with a higher number of match-ups between PRISMA, in situ and Sentinel-2 data are however recommended to fully characterize the on-orbit calibration of PRISMA for its exploitation in aquatic ecosystem mapping.

2.
Sensors (Basel) ; 19(19)2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31623312

RESUMO

Ocean colour is recognised as an Essential Climate Variable (ECV) by the Global Climate Observing System (GCOS); and spectrally-resolved water-leaving radiances (or remote-sensing reflectances) in the visible domain, and chlorophyll-a concentration are identified as required ECV products. Time series of the products at the global scale and at high spatial resolution, derived from ocean-colour data, are key to studying the dynamics of phytoplankton at seasonal and inter-annual scales; their role in marine biogeochemistry; the global carbon cycle; the modulation of how phytoplankton distribute solar-induced heat in the upper layers of the ocean; and the response of the marine ecosystem to climate variability and change. However, generating a long time series of these products from ocean-colour data is not a trivial task: algorithms that are best suited for climate studies have to be selected from a number that are available for atmospheric correction of the satellite signal and for retrieval of chlorophyll-a concentration; since satellites have a finite life span, data from multiple sensors have to be merged to create a single time series, and any uncorrected inter-sensor biases could introduce artefacts in the series, e.g., different sensors monitor radiances at different wavebands such that producing a consistent time series of reflectances is not straightforward. Another requirement is that the products have to be validated against in situ observations. Furthermore, the uncertainties in the products have to be quantified, ideally on a pixel-by-pixel basis, to facilitate applications and interpretations that are consistent with the quality of the data. This paper outlines an approach that was adopted for generating an ocean-colour time series for climate studies, using data from the MERIS (MEdium spectral Resolution Imaging Spectrometer) sensor of the European Space Agency; the SeaWiFS (Sea-viewing Wide-Field-of-view Sensor) and MODIS-Aqua (Moderate-resolution Imaging Spectroradiometer-Aqua) sensors from the National Aeronautics and Space Administration (USA); and VIIRS (Visible and Infrared Imaging Radiometer Suite) from the National Oceanic and Atmospheric Administration (USA). The time series now covers the period from late 1997 to end of 2018. To ensure that the products meet, as well as possible, the requirements of the user community, marine-ecosystem modellers, and remote-sensing scientists were consulted at the outset on their immediate and longer-term requirements as well as on their expectations of ocean-colour data for use in climate research. Taking the user requirements into account, a series of objective criteria were established, against which available algorithms for processing ocean-colour data were evaluated and ranked. The algorithms that performed best with respect to the climate user requirements were selected to process data from the satellite sensors. Remote-sensing reflectance data from MODIS-Aqua, MERIS, and VIIRS were band-shifted to match the wavebands of SeaWiFS. Overlapping data were used to correct for mean biases between sensors at every pixel. The remote-sensing reflectance data derived from the sensors were merged, and the selected in-water algorithm was applied to the merged data to generate maps of chlorophyll concentration, inherent optical properties at SeaWiFS wavelengths, and the diffuse attenuation coefficient at 490 nm. The merged products were validated against in situ observations. The uncertainties established on the basis of comparisons with in situ data were combined with an optical classification of the remote-sensing reflectance data using a fuzzy-logic approach, and were used to generate uncertainties (root mean square difference and bias) for each product at each pixel.

3.
Sensors (Basel) ; 14(12): 24116-31, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25517691

RESUMO

In this study we evaluate the capabilities of three satellite sensors for assessing water composition and bottom depth in Lake Garda, Italy. A consistent physics-based processing chain was applied to Moderate Resolution Imaging Spectroradiometer (MODIS), Landsat-8 Operational Land Imager (OLI) and RapidEye. Images gathered on 10 June 2014 were corrected for the atmospheric effects with the 6SV code. The computed remote sensing reflectance (Rrs) from MODIS and OLI were converted into water quality parameters by adopting a spectral inversion procedure based on a bio-optical model calibrated with optical properties of the lake. The same spectral inversion procedure was applied to RapidEye and to OLI data to map bottom depth. In situ measurements of Rrs and of concentrations of water quality parameters collected in five locations were used to evaluate the models. The bottom depth maps from OLI and RapidEye showed similar gradients up to 7 m (r = 0.72). The results indicate that: (1) the spatial and radiometric resolutions of OLI enabled mapping water constituents and bottom properties; (2) MODIS was appropriate for assessing water quality in the pelagic areas at a coarser spatial resolution; and (3) RapidEye had the capability to retrieve bottom depth at high spatial resolution. Future work should evaluate the performance of the three sensors in different bio-optical conditions.

4.
Appl Opt ; 52(10): 2019-37, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23545956

RESUMO

Ocean color measured from satellites provides daily, global estimates of marine inherent optical properties (IOPs). Semi-analytical algorithms (SAAs) provide one mechanism for inverting the color of the water observed by the satellite into IOPs. While numerous SAAs exist, most are similarly constructed and few are appropriately parameterized for all water masses for all seasons. To initiate community-wide discussion of these limitations, NASA organized two workshops that deconstructed SAAs to identify similarities and uniqueness and to progress toward consensus on a unified SAA. This effort resulted in the development of the generalized IOP (GIOP) model software that allows for the construction of different SAAs at runtime by selection from an assortment of model parameterizations. As such, GIOP permits isolation and evaluation of specific modeling assumptions, construction of SAAs, development of regionally tuned SAAs, and execution of ensemble inversion modeling. Working groups associated with the workshops proposed a preliminary default configuration for GIOP (GIOP-DC), with alternative model parameterizations and features defined for subsequent evaluation. In this paper, we: (1) describe the theoretical basis of GIOP; (2) present GIOP-DC and verify its comparable performance to other popular SAAs using both in situ and synthetic data sets; and, (3) quantify the sensitivities of their output to their parameterization. We use the latter to develop a hierarchical sensitivity of SAAs to various model parameterizations, to identify components of SAAs that merit focus in future research, and to provide material for discussion on algorithm uncertainties and future emsemble applications.

5.
Appl Opt ; 51(15): 2808-33, 2012 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-22614582

RESUMO

To address the challenges of the parameterization of ocean color inversion algorithms in optically complex waters, we present an adaptive implementation of the linear matrix inversion method (LMI) [J. Geophys. Res.101, 16631 (1996)], which iterates over a limited number of model parameter sets to account for naturally occurring spatial or temporal variability in inherent optical properties (IOPs) and concentration specific IOPs (SIOPs). LMI was applied to a simulated reflectance dataset for spectral bands representing measured water properties of a macrotidal embayment characterized by a large variability in the shape and amplitude factors controlling the IOP spectra. We compare the inversion results for the single-model parameter implementation to the adaptive parameterization of LMI for the retrieval of bulk IOPs, the IOPs apportioned to the optically active constituents, and the concentrations of the optically active constituents. We found that ocean color inversion with LMI is significantly sensitive to the a priori selection of the empirical parameters g0 and g1 of the equations relating the above-surface remote-sensing reflectance to the IOPs in the water column [J. Geophys. Res.93, 10909 (1988)]. When assuming the values proposed for open-ocean applications for g0 and g1 [J. Geophys. Res.93, 10909 (1988)], the accuracy of the retrieved IOPs, and concentrations was substantially lower than that retrieved with the parameterization developed for coastal waters [Appl. Opt.38, 3831 (1999)] because the optically complex waters analyzed in this study were dominated by particulate and dissolved matter. The adaptive parameterization of LMI yielded consistently more accurate inversion results than the single fixed SIOP model parameterizations of LMI. The adaptive implementation of LMI led to an improvement in the accuracy of apportioned IOPs and concentrations, particularly for the phytoplankton-related quantities. The adaptive parameterization encompassing wider IOP ranges were more accurate for the retrieval of bulk IOPs, apportioned IOPs, and concentration of optically active constituents.

6.
Sci Total Environ ; 817: 153002, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35031364

RESUMO

COVID-19 lockdown brought to a drastic reduction of anthropic impacts on the environment worldwide, including the marine-coastal system. Earth-Observation (EO) data have the potential to monitor and diagnose the effects of the lockdown in terms of water quality. Here we connect the dots among some coastal environmental changes that occurred during the Italian COVID-19 lockdown by using EO data, also seeking to assess connectivity between inland and marine systems. We present a holistic analysis of spatial and temporal variability of environmental parameters in the North Adriatic Sea, Mediterranean basin, exploiting the synergy of different satellite sensors, as well as hydrologic data from in situ observations. Our analysis indicates a favourable interplay of environmental variability that resulted in negative anomalies of Chlorophyll-a concentration, with respect to the climatologic values. Peculiar meteo-oceanographic and hydrological conditions made hard to disentangle potential anthropogenic effects. However, a multi-year hierarchical cluster analysis of riverine remote sensing reflectances groups together the optical properties of inland waters during the lockdown. This emergent cluster highlights the possibility of a second-order, anthropogenic effect that, superimposed to the (first-order) environmental natural causes, may have enhanced water quality during the lockdown.


Assuntos
COVID-19 , COVID-19/epidemiologia , Clorofila A , Controle de Doenças Transmissíveis , Monitoramento Ambiental/métodos , Humanos , Percepção , SARS-CoV-2
7.
Opt Express ; 19(27): 26768-82, 2011 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-22274260

RESUMO

Fluorometers are widely used in ecosystem observing to monitor fluorescence signals from organic compounds, as well as to infer geophysical parameters such as chlorophyll or CDOM concentration, but measurements are susceptible to variation caused by biofouling, instrument design, sensor drift, operating environment, and calibration rigor. To collect high quality data, such sensors need frequent checking and regular calibration. In this study, a wide variety of both liquid and solid fluorescent materials were trialed to assess their suitability as reference standards for performance assessment of in situ fluorometers. Criteria used to evaluate the standards included the spectral excitation/emission responses of the materials relative to fluorescence sensors and to targeted ocean properties, the linearity of the fluorometer's optical response with increasing concentration, stability and consistency, availability and ease of use, as well as cost. Findings are summarized as a series of recommended reference standards for sensors deployed on stationary and mobile platforms, to suit a variety of in situ coastal to ocean sensor configurations. Repeated determinations of chlorophyll scale factor using the recommended liquid standard, Fluorescein, achieved an accuracy of 2.5%. Repeated measurements with the recommended solid standard, Plexiglas Satinice® plum 4H01 DC (polymethylmethacrylate), over an 18 day period varied from the mean value by 1.0% for chlorophyll sensors and 3.3% for CDOM sensors.


Assuntos
Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/normas , Espectrometria de Fluorescência/instrumentação , Espectrometria de Fluorescência/normas , Calibragem , Análise de Falha de Equipamento/normas , Oceanos e Mares , Padrões de Referência , Estados Unidos
8.
Mar Pollut Bull ; 65(4-9): 210-23, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22459495

RESUMO

Riverine freshwater plumes are the major transport mechanism for nutrients, sediments and pollutants into the Great Barrier Reef (GBR) lagoon and connect the land with the receiving coastal and marine waters. Knowledge of the variability of the freshwater extent into the GBR lagoon is relevant for marine park management to develop strategies for improving ecosystem health and risk assessments. In this study, freshwater extent has been estimated for the entire GBR lagoon area from daily satellite observations of the Moderate Resolution Imaging Spectroradiometer (MODIS) between 2002 and 2010. To enable a reliable mapping of freshwater plumes we applied a physics-based coastal ocean colour algorithm, that simultaneously retrieves chlorophyll-a, non-algal particulate matter and coloured dissolved organic matter (CDOM), from which we used CDOM as a surrogate for salinity (S) for mapping the freshwater extent.


Assuntos
Recifes de Corais , Monitoramento Ambiental/métodos , Água Doce/análise , Água do Mar/química , Astronave , Movimentos da Água , Austrália , Inundações/estatística & dados numéricos , Água Doce/química , Tecnologia de Sensoriamento Remoto , Estações do Ano
9.
Mar Pollut Bull ; 65(4-9): 292-305, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22154275

RESUMO

Photosystem II (PSII) herbicides are used in large quantities on agricultural lands adjoining the Great Barrier Reef (GBR). Routine monitoring at 14 sites in inshore waters of the GBR using passive sampling techniques detected diuron (32-94% of sampling periods) at maximum concentrations of 1.7-430ng L(-1) in the relatively pristine Cape York Region to the Mackay Whitsunday Region, respectively. A PSII herbicide equivalent (PSII-HEq) index developed as an indicator for reporting was dominated by diuron (average contribution 89%) and typically increased during the wet season. The maximum PSII-HEq indicates the potential for photosynthetic inhibition of diatoms, seagrass and coral-symbionts. PSII herbicides were significantly positively correlated with remotely sensed coloured dissolved organic matter, a proxy for freshwater extent. Combining these methods provides for the first time the potential to cost-effectively monitor improvements in water quality entering the GBR with respect to exposure to PSII herbicides.


Assuntos
Recifes de Corais , Monitoramento Ambiental/métodos , Água Doce/química , Herbicidas/análise , Poluentes Químicos da Água/análise , Austrália , Conservação dos Recursos Naturais , Fotossíntese/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/efeitos dos fármacos , Tecnologia de Sensoriamento Remoto , Estações do Ano , Água do Mar/química , Astronave , Poluição Química da Água/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA