Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 42(10): 1262-1271, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36047410

RESUMO

BACKGROUND: In mice, GPR146 (G-protein-coupled receptor 146) deficiency reduces plasma lipids and protects against atherosclerosis. Whether these findings translate to humans is unknown. METHODS: Common and rare genetic variants in the GPR146 gene locus were used as research instruments in the UK Biobank. The Lifelines, The Copenhagen-City Heart Study, and a cohort of individuals with familial hypobetalipoproteinemia were used to find and study rare GPR146 variants. RESULTS: In the UK Biobank, carriers of the common rs2362529-C allele present with lower low-density lipoprotein cholesterol, apo (apolipoprotein) B, high-density lipoprotein cholesterol, apoAI, CRP (C-reactive protein), and plasma liver enzymes compared with noncarriers. Carriers of the common rs1997243-G allele, associated with higher GPR146 expression, present with the exact opposite phenotype. The associations with plasma lipids of the above alleles are allele dose-dependent. Heterozygote carriers of a rare coding variant (p.Pro62Leu; n=2615), predicted to be damaging, show a stronger reductions in the above parameters compared with carriers of the common rs2362529-C allele. The p.Pro62Leu variant is furthermore shown to segregate with low low-density lipoprotein cholesterol in a family with familial hypobetalipoproteinemia. Compared with controls, carriers of the common rs2362529-C allele show a marginally reduced risk of coronary artery disease (P=0.03) concomitant with a small effect size on low-density lipoprotein cholesterol (average decrease of 2.24 mg/dL in homozygotes) of this variant. Finally, mendelian randomization analyses suggest a causal relationship between GPR146 gene expression and plasma lipid and liver enzyme levels. CONCLUSIONS: This study shows that carriers of new genetic GPR146 variants have a beneficial cardiometabolic risk profile, but it remains to be shown whether genetic or pharmaceutical inhibition of GPR146 protects against atherosclerosis in humans.


Assuntos
Aterosclerose , Hipobetalipoproteinemias , Animais , Apolipoproteínas B/genética , Aterosclerose/genética , Aterosclerose/prevenção & controle , Proteína C-Reativa , HDL-Colesterol , LDL-Colesterol , Humanos , Hipobetalipoproteinemias/genética , Camundongos , Preparações Farmacêuticas , Receptores Acoplados a Proteínas G/genética
2.
Bioeng Transl Med ; 9(4): e10659, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39036087

RESUMO

The liver plays a key role in the metabolism of lipoproteins, controlling both production and catabolism. To accelerate the development of new lipid-lowering therapies in humans, it is essential to have a relevant in vitro study model available. The current hepatocyte-like cells (HLCs) models derived from hiPSC can be used to model many genetically driven diseases but require further improvement to better recapitulate the complexity of liver functions. Here, we aimed to improve the maturation of HLCs using a three-dimensional (3D) approach using Biomimesys®, a hyaluronic acid-based hydroscaffold in which hiPSCs may directly form aggregates and differentiate toward a functional liver organoid model. After a 28-day differentiation 3D protocol, we showed that many hepatic genes were upregulated in the 3D model (liver organoids) in comparison with the 2D model (HLCs). Liver organoids, grown on Biomimesys®, exhibited an autonomous cell organization, were composed of different cell types and displayed enhanced cytochromes P450 activities compared to HLCs. Regarding the functional capacities of these organoids, we showed that they were able to accumulate lipids (hepatic steatosis), internalize low-density lipoprotein and secrete apolipoprotein B. Interestingly, we showed for the first time that this model was also able to produce apolipoprotein (a), the apolipoprotein (a) specific of Lp(a). This innovative hiPSC-derived liver organoid model may serve as a relevant model for studying human lipopoprotein metabolism, including Lp(a).

3.
Stem Cell Res ; 72: 103205, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37734317

RESUMO

Elevated circulating lipoprotein(a) (Lp(a)) is a genetically determined risk factor for coronary artery disease and aortic valve stenosis (Tsimikas, 2017). Importantly, the LPA gene, which encodes the apolipoprotein(a) (protein-component of Lp(a)), is missing in most species, and human liver cell-lines do not secrete Lp(a). There is a need for the development of human in vitro models suitable for investigating biological mechanisms involved in Lp(a) metabolism. We here generated and characterized iPSCs from a patient with extremely high Lp(a) plasma levels genetically determined (Coassin et al., 2022). This unique cellular model offers great opportunities and new perspectives for investigations on biological mechanisms involved in Lp(a) metabolism.


Assuntos
Estenose da Valva Aórtica , Doença da Artéria Coronariana , Células-Tronco Pluripotentes Induzidas , Humanos , Lipoproteína(a)/genética , Lipoproteína(a)/metabolismo , Valva Aórtica/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Estenose da Valva Aórtica/etiologia , Estenose da Valva Aórtica/genética , Doença da Artéria Coronariana/etiologia , Doença da Artéria Coronariana/genética , Fatores de Risco
4.
Stem Cell Res ; 60: 102721, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35247835

RESUMO

Dyslipidemia is a key modifiable causal risk factor involved in the development of atherosclerotic cardiovascular disease. Recently, the G protein-coupled receptor 146 (GPR146), a member of the G-coupled protein receptors' family, has been shown to be a regulator of plasma cholesterol. Inhibition of hepatic GPR146 in mice displays protective effect against both hypercholesterolemia and atherosclerosis. Here, we characterize a genetically engineered human induced pluripotent stem cell (hiPSC) model invalidated for GPR146 (ITXi001-A-1) using CRISPR-Cas9 editing technology. Differentiation of ITXi001-A-1 towards hepatic fate will provide a suitable model for deciphering the molecular mechanisms sustaining the beneficial metabolic effects of GPR146 inhibition.


Assuntos
Células-Tronco Pluripotentes Induzidas , Animais , Sistemas CRISPR-Cas/genética , Diferenciação Celular , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Fígado , Camundongos
5.
STAR Protoc ; 3(4): 101680, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36115027

RESUMO

This manuscript proposes an efficient and reproducible protocol for the generation of genetically modified human induced pluripotent stem cells (hiPSCs) by genome editing using CRISPR-Cas9 technology. Here, we describe the experimental strategy for generating knockout (KO) and knockin (KI) clonal populations of hiPSCs using single-cell sorting by flow cytometry. We efficiently achieved up to 15 kb deletions, molecular tag insertions, and single-nucleotide editing in hiPSCs. We emphasize the efficacy of this approach in terms of cell culture time. For complete details on the use and execution of this protocol, please refer to Canac et al. (2022) and Bray et al. (2022).


Assuntos
Edição de Genes , Células-Tronco Pluripotentes Induzidas , Humanos , Edição de Genes/métodos , Sistemas CRISPR-Cas , Células Clonais , Técnicas de Cultura de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA