Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 150(21)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37539661

RESUMO

The maize ligule is an epidermis-derived structure that arises from the preligule band (PLB) at a boundary between the blade and sheath. A hinge-like auricle also develops immediately distal to the ligule and contributes to blade angle. Here, we characterize the stages of PLB and early ligule development in terms of topography, cell area, division orientation, cell wall rigidity and auxin response dynamics. Differential thickening of epidermal cells and localized periclinal divisions contributed to the formation of a ridge within the PLB, which ultimately produces the ligule fringe. Patterns in cell wall rigidity were consistent with the subdivision of the PLB into two regions along a distinct line positioned at the nascent ridge. The proximal region produces the ligule, while the distal region contributes to one epidermal face of the auricles. Although the auxin transporter PIN1 accumulated in the PLB, observed differential auxin transcriptional response did not underlie the partitioning of the PLB. Our data demonstrate that two zones with contrasting cellular properties, the preligule and preauricle, are specified within the ligular region before ligule outgrowth.


Assuntos
Ácidos Indolacéticos , Zea mays , Zea mays/genética
2.
Semin Cell Dev Biol ; 134: 103-111, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35396168

RESUMO

Brown algae are complex multicellular eukaryotes whose cells possess a cell wall, which is an important structure that regulates cell size and shape. Alginate and fucose-containing sulfated polysaccharides (FCSPs) are two carbohydrate types that have major roles in influencing the mechanical properties of the cell wall (i.e. increasing or decreasing wall stiffness), which in turn regulate cell expansion, division, adhesion, and other processes; however, how brown algal cell wall structure regulates its mechanical properties, and how this relationship influences cellular growth and organismal development, is not well-understood. This chapter is focused on reviewing what we currently know about how the roles of alginates and FCSPs in brown algal developmental processes, as well as how they influence the structural and mechanical properties of cell walls. Additionally, we discuss how brown algal mutants may be leveraged to learn more about the underlying mechanisms that regulate cell wall structure, mechanics, and developmental processes, and finally we propose questions to guide future research with the use of emerging technologies.


Assuntos
Phaeophyceae , Phaeophyceae/genética , Phaeophyceae/química , Phaeophyceae/metabolismo , Parede Celular/química , Polissacarídeos/análise , Polissacarídeos/química , Polissacarídeos/metabolismo , Proliferação de Células
3.
Plant Cell ; 29(12): 2959-2973, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29167321

RESUMO

How complex developmental-genetic networks are translated into organs with specific 3D shapes remains an open question. This question is particularly challenging because the elaboration of specific shapes is in essence a question of mechanics. In plants, this means how the genetic circuitry affects the cell wall. The mechanical properties of the wall and their spatial variation are the key factors controlling morphogenesis in plants. However, these properties are difficult to measure and investigating their relation to genetic regulation is particularly challenging. To measure spatial variation of mechanical properties, one must determine the deformation of a tissue in response to a known force with cellular resolution. Here, we present an automated confocal micro-extensometer (ACME), which greatly expands the scope of existing methods for measuring mechanical properties. Unlike classical extensometers, ACME is mounted on a confocal microscope and uses confocal images to compute the deformation of the tissue directly from biological markers, thus providing 3D cellular scale information and improved accuracy. Additionally, ACME is suitable for measuring the mechanical responses in live tissue. As a proof of concept, we demonstrate that the plant hormone gibberellic acid induces a spatial gradient in mechanical properties along the length of the Arabidopsis thaliana hypocotyl.


Assuntos
Arabidopsis/citologia , Microscopia Confocal/instrumentação , Células Vegetais/química , Automação , Fenômenos Biomecânicos , Parede Celular/efeitos dos fármacos , Parede Celular/fisiologia , Elasticidade , Giberelinas/farmacologia , Hipocótilo/citologia , Hipocótilo/efeitos dos fármacos , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/efeitos da radiação , Luz , Modelos Biológicos , Células Vegetais/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos
4.
New Phytol ; 221(1): 540-552, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30281798

RESUMO

Epidermal cells of leaves are diverse: tabular pavement cells, trichomes, and stomatal complexes. Pavement cells from the monocot Zea mays (maize) and the eudicot Arabidopsis thaliana (Arabidopsis) have highly undulate anticlinal walls. The molecular basis for generating these undulating margins has been extensively investigated in these species. This has led to two assumptions: first, that particular plant lineages are characterized by particular pavement cell shapes; and second, that undulatory cell shapes are common enough to be model shapes. To test these assumptions, we quantified pavement cell shape in epidermides from the leaves of 278 vascular plant taxa. We found that monocot pavement cells tended to have weakly undulating margins, fern cells had strongly undulating margins, and eudicot cells showed no particular undulation degree. Cells with highly undulating margins, like those of Arabidopsis and maize, were in the minority. We also found a trend towards more undulating cell margins on abaxial leaf surfaces; and that highly elongated leaves in ferns, monocots and gymnosperms tended to have highly elongated cells. Our results reveal the diversity of pavement cell shapes, and lays the quantitative groundwork for testing hypotheses about pavement cell form and function within a phylogenetic context.


Assuntos
Filogenia , Células Vegetais , Folhas de Planta/citologia , Anisotropia , Forma Celular , Processamento de Imagem Assistida por Computador , Epiderme Vegetal/citologia , Plantas/genética
5.
Plant Physiol ; 176(2): 1547-1558, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29150558

RESUMO

A major question in plant biology concerns the specification and functional differentiation of cell types. This is in the context of constraints imposed by networks of cell walls that both adhere cells and contribute to the form and function of developing organs. Here, we report the identification of a glycan epitope that is specific to phloem sieve element cell walls in several systems. A monoclonal antibody, designated LM26, binds to the cell wall of phloem sieve elements in stems of Arabidopsis (Arabidopsis thaliana), Miscanthus x giganteus, and notably sugar beet (Beta vulgaris) roots where phloem identification is an important factor for the study of phloem unloading of Suc. Using microarrays of synthetic oligosaccharides, the LM26 epitope has been identified as a ß-1,6-galactosyl substitution of ß-1,4-galactan requiring more than three backbone residues for optimized recognition. This branched galactan structure has previously been identified in garlic (Allium sativum) bulbs in which the LM26 epitope is widespread throughout most cell walls including those of phloem cells. Garlic bulb cell wall material has been used to confirm the association of the LM26 epitope with cell wall pectic rhamnogalacturonan-I polysaccharides. In the phloem tissues of grass stems, the LM26 epitope has a complementary pattern to that of the LM5 linear ß-1,4-galactan epitope, which is detected only in companion cell walls. Mechanical probing of transverse sections of M x giganteus stems and leaves by atomic force microscopy indicates that phloem sieve element cell walls have a lower indentation modulus (indicative of higher elasticity) than companion cell walls.


Assuntos
Arabidopsis/metabolismo , Beta vulgaris/metabolismo , Galactanos/metabolismo , Poaceae/metabolismo , Anticorpos Monoclonais , Arabidopsis/citologia , Beta vulgaris/citologia , Parede Celular/metabolismo , Epitopos , Galactanos/química , Galactanos/imunologia , Fenômenos Mecânicos , Análise em Microsséries , Microscopia de Força Atômica , Floema/citologia , Floema/metabolismo , Folhas de Planta/citologia , Folhas de Planta/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo , Caules de Planta/citologia , Caules de Planta/metabolismo , Poaceae/citologia
6.
J Exp Bot ; 69(2): 137-146, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29211894

RESUMO

Since its first formulation almost 50 years ago, acid growth has had a chequered past complicated by utilization of diverse species and organs for testing alongside necessary but coarse methodology. Within the past 25 years, we have gained new insights into the molecular mechanisms behind the transduction of the signal auxin into the reality of an apoplastic pH shift as well as the effect on cell wall mechanics and the biochemical players within the wall contributing to the resultant growth. In this review, we begin by discussing the historical work and its complications, move on to the modern work and its addition to acid growth, which we finally summarize in an updated model which includes new postulations and questions.


Assuntos
Ácidos , Ácidos Indolacéticos , Desenvolvimento Vegetal/fisiologia , Reguladores de Crescimento de Plantas/fisiologia , Parede Celular/fisiologia , Concentração de Íons de Hidrogênio , Modelos Biológicos
8.
Planta ; 242(4): 791-811, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26168980

RESUMO

MAIN CONCLUSION: Recent publications have increased our knowledge of how pectin composition and the degree of homogalacturonan methylesterification impact the biochemical and biomechanical properties of plant cell walls, plant development, and plants' interactions with their abiotic and biotic environments. Experimental observations have shown that the relationships between the DM, the pattern of de-methylesterificaton, its effect on cell wall elasticity, other biomechanical parameters, and growth are not straightforward. Working towards a detailed understanding of these relationships at single cell resolution is one of the big tasks of pectin research. Pectins are highly complex polysaccharides abundant in plant primary cell walls. New analytical and microscopy techniques are revealing the composition and mechanical properties of the cell wall and increasing our knowledge on the topic. Progress in plant physiological research supports a link between cell wall pectin modifications and plant development and interactions with the environment. Homogalacturonan pectins, which are major components of the primary cell wall, have a potential for modifications such as methylesterification, as well as an ability to form cross-linked structures with divalent cations. This contributes to changing the mechanical properties of the cell wall. This review aims to give a comprehensive overview of the pectin component homogalacturonan, including its synthesis, modification, regulation and role in the plant cell wall.


Assuntos
Parede Celular/metabolismo , Pectinas/metabolismo , Fenômenos Biomecânicos , Esterificação
9.
J Exp Bot ; 66(11): 3229-41, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25873663

RESUMO

Growth in plants results from the interaction between genetic and signalling networks and the mechanical properties of cells and tissues. There has been a recent resurgence in research directed at understanding the mechanical aspects of growth, and their feedback on genetic regulation. This has been driven in part by the development of new micro-indentation techniques to measure the mechanical properties of plant cells in vivo. However, the interpretation of indentation experiments remains a challenge, since the force measures results from a combination of turgor pressure, cell wall stiffness, and cell and indenter geometry. In order to interpret the measurements, an accurate mechanical model of the experiment is required. Here, we used a plant cell system with a simple geometry, Nicotiana tabacum Bright Yellow-2 (BY-2) cells, to examine the sensitivity of micro-indentation to a variety of mechanical and experimental parameters. Using a finite-element mechanical model, we found that, for indentations of a few microns on turgid cells, the measurements were mostly sensitive to turgor pressure and the radius of the cell, and not to the exact indenter shape or elastic properties of the cell wall. By complementing indentation experiments with osmotic experiments to measure the elastic strain in turgid cells, we could fit the model to both turgor pressure and cell wall elasticity. This allowed us to interpret apparent stiffness values in terms of meaningful physical parameters that are relevant for morphogenesis.


Assuntos
Parede Celular/fisiologia , Nicotiana/fisiologia , Células Vegetais/fisiologia , Elasticidade , Microscopia de Força Atômica , Modelos Teóricos , Pressão Osmótica , Estresse Mecânico , Nicotiana/crescimento & desenvolvimento
10.
Plant Cell ; 24(6): 2318-27, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22722959

RESUMO

In a majority of species, leaf development is thought to proceed in a bilaterally symmetric fashion without systematic asymmetries. This is despite the left and right sides of an initiating primordium occupying niches that differ in their distance from sinks and sources of auxin. Here, we revisit an existing model of auxin transport sufficient to recreate spiral phyllotactic patterns and find previously overlooked asymmetries between auxin distribution and the centers of leaf primordia. We show that it is the direction of the phyllotactic spiral that determines the side of the leaf these asymmetries fall on. We empirically confirm the presence of an asymmetric auxin response using a DR5 reporter and observe morphological asymmetries in young leaf primordia. Notably, these morphological asymmetries persist in mature leaves, and we observe left-right asymmetries in the superficially bilaterally symmetric leaves of tomato (Solanum lycopersicum) and Arabidopsis thaliana that are consistent with modeled predictions. We further demonstrate that auxin application to a single side of a leaf primordium is sufficient to recapitulate the asymmetries we observe. Our results provide a framework to study a previously overlooked developmental axis and provide insights into the developmental constraints imposed upon leaf morphology by auxin-dependent phyllotactic patterning.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Padronização Corporal , Ácidos Indolacéticos/metabolismo , Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Solanum lycopersicum/crescimento & desenvolvimento , Arabidopsis/metabolismo , Transporte Biológico , Regulação da Expressão Gênica de Plantas , Genes Reporter , Ácidos Indolacéticos/farmacologia , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Folhas de Planta/efeitos dos fármacos
11.
J Exp Bot ; 64(15): 4651-62, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23873995

RESUMO

Morphogenesis, the remarkable process by which a developing organism achieves its shape, relies on the coordinated growth of cells, tissues, and organs. While the molecular and genetic basis of morphogenesis is starting to be unravelled, understanding shape changes is lagging behind. Actually, shape is imposed by the structural elements of the organism, and the translation of cellular activity into morphogenesis must go through these elements. Therefore, many methods have been developed recently to quantify, at cellular resolution, the properties of the main structural element in plants, the cell wall. As plant cell growth is restrained by the cell wall and powered by turgor pressure, such methods also address the quantification of turgor. These different micromechanical approaches are reviewed here, with a critical assessment of their strengths and weaknesses, and a discussion of how they can help us understand the regulation of growth and morphogenesis.


Assuntos
Biofísica , Parede Celular/fisiologia , Mecanotransdução Celular , Células Vegetais/fisiologia , Desenvolvimento Vegetal , Fenômenos Biomecânicos , Elasticidade , Brotos de Planta/fisiologia , Pressão , Estresse Mecânico , Viscosidade
12.
Plant Cell ; 22(4): 1006-18, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20424178

RESUMO

A leaf develops from a few cells that grow, divide, and differentiate to form a complex organ that is precisely positioned relative to its neighbors. How cells communicate to achieve such coordinated growth and development is the focus of this review. We discuss (1) how the stem cells within the shoot meristem gain competence to form organs, (2) what determines the positioning and initiation of new organs, and (3) how the new organ attains its characteristic shape and polarity. Special emphasis is given to the recent integration of mathematics and physics in the study of leaf development.


Assuntos
Meristema/citologia , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Homeodomínio/metabolismo , Ácidos Indolacéticos/metabolismo , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/citologia , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Brotos de Planta/citologia , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Transdução de Sinais , Células-Tronco/citologia , Células-Tronco/metabolismo
13.
Plant Direct ; 6(2): e367, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35198848

RESUMO

The ß-glucuronidase gene, uidA (GUS), has remained a favorite reporter gene in plants since its introduction in 1987 for its stability and versatility in a variety of fluorometric, spectrophotometric, and histochemical techniques. One of the most popular uses is as a reporter gene for visualizing endogenous promoter activities within plant tissues. Despite this popularity, specific protocols for minimizing nonrepresentative staining patterns, including false negatives, in challenging tissue types are not common. This became a large issue during our work on dark-grown Arabidopsis hypocotyls, and we set out to develop a protocol that would ensure accurate staining in a tissue that is biologically resistant to reagent penetration. Through extensive testing using a variety of constitutive and endogenous promoter::GUS fusion lines, we have developed an optimized GUS staining protocol that combines the use of acetone as a fixative, deliberate physical damage, and proper positive and negative controls to help ensure accurate staining along the hypocotyl while minimizing false negatives. Hopefully, our recommendations will allow for improved staining that more accurately reflects the true activity of cloned endogenous promoters and thus facilitate a more accurate understanding of promoter activity in Arabidopsis hypocotyls and other hard-to-stain tissues.

14.
Proc Natl Acad Sci U S A ; 105(8): 3151-6, 2008 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-18287041

RESUMO

LEAFY COTYLEDON2 (LEC2) is a central regulator of embryogenesis sufficient to induce somatic cells to form embryos when expressed ectopically. Here, we analyze the cellular processes induced by LEC2, a B3 domain transcription factor, that may underlie its ability to promote somatic embryogenesis. We show auxin-responsive genes are induced after LEC2 activation in seedlings. Genes encoding enzymes involved in auxin biosynthesis, YUC2 and YUC4, are activated within 1 h after induction of LEC2 activity, and YUC4 appears to be a direct transcriptional target of LEC2. We also show ectopic LEC2 expression induces accumulation of seed storage protein and oil bodies in vegetative and reproductive organs, events that normally occur during the maturation phase of embryogenesis. Furthermore, LEC2 activates seed protein genes before an increase in RNAs encoding LEC1 or FUS3 is observed. Thus, LEC2 causes rapid changes in auxin responses and induces cellular differentiation characteristic of the maturation phase. The relevance of these changes to the ability of LEC2 to promote somatic embryogenesis is discussed.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/genética , Diferenciação Celular/genética , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Ácidos Indolacéticos/metabolismo , Fatores de Transcrição/fisiologia , Arabidopsis/embriologia , Imunoprecipitação da Cromatina , Primers do DNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sementes/metabolismo , Sementes/fisiologia
15.
PLoS One ; 16(4): e0233249, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33909633

RESUMO

Quantitative gene expression analysis is an important tool in the scientist's belt. The identification of evenly expressed reference genes is necessary for accurate quantitative gene expression analysis, whether by traditional RT-PCR (reverse-transcription polymerase chain reaction) or by qRT-PCR (quantitative real-time PCR; qPCR). In the Stramenopiles (the major line of eukaryotes that includes brown algae) there is a noted lack of known reference genes for such studies, largely due to the absence of available molecular tools. Here we present a set of nine reference genes (Elongation Factor 1 alpha (EF1A), Elongation Factor 2 alpha (EF2A), Elongation Factor 1 beta (EF1B), 14-3-3 Protein, Ubiquitin Conjugating Enzyme (UBCE2), Glyceraldehyde-3-phosphate Dehydrogenase (GAPDH), Actin Related Protein Complex (ARP2/3), Ribosomal Protein (40s; S23), and Actin) for the brown alga Fucus distichus. These reference genes were tested on adult sporophytes across six abiotic stress conditions (desiccation, light and temperature modification, hormone addition, pollutant exposure, nutrient addition, and wounding). Suitability of these genes as reference genes was quantitatively evaluated across conditions using standard methods and the majority of the tested genes were evaluated favorably. However, we show that normalization genes should be chosen on a condition-by-condition basis. We provide a recommendation that at least two reference genes be used per experiment, a list of recommended pairs for the conditions tested here, and a procedure for identifying a suitable set for an experimenter's unique design. With the recent expansion of interest in brown algal biology and accompanied molecular tools development, the variety of experimental conditions tested here makes this study a valuable resource for future work in basic biology and understanding stress responses in the brown algal lineage.


Assuntos
Fucus , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Proteínas de Plantas , Reação em Cadeia da Polimerase em Tempo Real/normas , Estresse Fisiológico , Fucus/genética , Fucus/metabolismo , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Padrões de Referência
16.
Trends Plant Sci ; 13(12): 624-30, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19010711

RESUMO

Two fundamental aspects of plant development are the maturation phase of embryo development in seed plants and totipotency via somatic embryogenesis (SE). The LEAFY COTYLEDON (LEC) transcription factors (TFs) establish environments that promote cellular processes characteristic of the maturation phase and the initiation of somatic embryo formation. Based on recent studies, we and others propose that specific target genes activated by the LEC TFs underlie, in part, their roles in the maturation phase and SE. We also propose that the effect of LEC TFs on the balance of abscisic acid to gibberellic acid might link their roles in totipotency and the maturation phase.


Assuntos
Desenvolvimento Embrionário , Desenvolvimento Vegetal , Sementes/crescimento & desenvolvimento , Células-Tronco Totipotentes/metabolismo , Fatores de Transcrição/metabolismo , Ácido Abscísico/metabolismo , Arabidopsis/embriologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Giberelinas/metabolismo , Plantas/embriologia , Plantas/metabolismo , Sementes/embriologia , Sementes/metabolismo
17.
Curr Biol ; 30(21): 4165-4176.e5, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32888486

RESUMO

The cell wall is the primary interface between plant cells and their immediate environment and must balance multiple functionalities, including the regulation of growth, the entry of beneficial microbes, and protection against pathogens. Here, we demonstrate how API, a SCAR2 protein component of the SCAR/WAVE complex, controls the root cell wall architecture important for pathogenic oomycete and symbiotic bacterial interactions in legumes. A mutation in API results in root resistance to the pathogen Phytophthora palmivora and colonization defects by symbiotic rhizobia. Although api mutant plants do not exhibit significant overall growth and development defects, their root cells display delayed actin and endomembrane trafficking dynamics and selectively secrete less of the cell wall polysaccharide xyloglucan. Changes associated with a loss of API establish a cell wall architecture with altered biochemical properties that hinder P. palmivora infection progress. Thus, developmental stage-dependent modifications of the cell wall, driven by SCAR/WAVE, are important in balancing cell wall developmental functions and microbial invasion.


Assuntos
Parede Celular/metabolismo , Resistência à Doença/genética , Phytophthora/patogenicidade , Doenças das Plantas/genética , Proteínas de Plantas/genética , Actinas/metabolismo , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno/genética , Medicago truncatula , Mutação , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Plantas Geneticamente Modificadas , Rhizobium/citologia , Rhizobium/metabolismo , Simbiose/genética
18.
Elife ; 72018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30226465

RESUMO

Fast directional growth is a necessity for the young seedling; after germination, it needs to quickly penetrate the soil to begin its autotrophic life. In most dicot plants, this rapid escape is due to the anisotropic elongation of the hypocotyl, the columnar organ between the root and the shoot meristems. Anisotropic growth is common in plant organs and is canonically attributed to cell wall anisotropy produced by oriented cellulose fibers. Recently, a mechanism based on asymmetric pectin-based cell wall elasticity has been proposed. Here we present a harmonizing model for anisotropic growth control in the dark-grown Arabidopsis thaliana hypocotyl: basic anisotropic information is provided by cellulose orientation) and additive anisotropic information is provided by pectin-based elastic asymmetry in the epidermis. We quantitatively show that hypocotyl elongation is anisotropic starting at germination. We present experimental evidence for pectin biochemical differences and wall mechanics providing important growth regulation in the hypocotyl. Lastly, our in silico modelling experiments indicate an additive collaboration between pectin biochemistry and cellulose orientation in promoting anisotropic growth.


Assuntos
Elasticidade , Germinação , Hipocótilo/crescimento & desenvolvimento , Epiderme Vegetal/crescimento & desenvolvimento , Anisotropia , Biomarcadores/metabolismo , Fenômenos Biomecânicos , Divisão Celular , Hipocótilo/citologia , Microtúbulos/metabolismo , Pectinas/química , Epiderme Vegetal/citologia
19.
Methods Mol Biol ; 1497: 125-133, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27864763

RESUMO

Atomic force microscopy, and related nano-indentation techniques, is a valuable tool for analyzing the elastic properties of plant cell walls as they relate to changes in cell wall chemistry, changes in development, and response to hormones. Within this chapter I will describe a method for analyzing the effect of the phytohormone auxin on the cell wall elasticity of tobacco BY-2 cells. This general method may be easily altered for different experimental systems and hormones of interest.


Assuntos
Parede Celular/efeitos dos fármacos , Parede Celular/fisiologia , Elasticidade/efeitos dos fármacos , Elasticidade/fisiologia , Ácidos Indolacéticos/farmacologia , Nicotiana/fisiologia , Reguladores de Crescimento de Plantas/farmacologia , Linhagem Celular , Módulo de Elasticidade/efeitos dos fármacos , Módulo de Elasticidade/fisiologia , Microscopia de Força Atômica/métodos , Nicotiana/efeitos dos fármacos
20.
Curr Biol ; 27(15): R758-R760, 2017 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-28787606

RESUMO

In plants, one of the most understated developmental phenomena is that of straightness - a root will grow down, a petal will grow flat. A new mutant in Arabidopsis thaliana that displays twisting in petals and roots, at the organ and cell level, has been investigated. Strikingly, the twisting is always left-handed and is not due to underlying cytoskeletal skewing, as is the case in other known, phenotypically similar, mutants.


Assuntos
Proteínas de Arabidopsis , Parede Celular , Microtúbulos , Raízes de Plantas , Polímeros , Ramnose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA