Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Nat Chem Biol ; 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37904048

RESUMO

Medicinal chemistry has discovered thousands of potent protein and lipid kinase inhibitors. These may be developed into therapeutic drugs or chemical probes to study kinase biology. Because of polypharmacology, a large part of the human kinome currently lacks selective chemical probes. To discover such probes, we profiled 1,183 compounds from drug discovery projects in lysates of cancer cell lines using Kinobeads. The resulting 500,000 compound-target interactions are available in ProteomicsDB and we exemplify how this molecular resource may be used. For instance, the data revealed several hundred reasonably selective compounds for 72 kinases. Cellular assays validated GSK986310C as a candidate SYK (spleen tyrosine kinase) probe and X-ray crystallography uncovered the structural basis for the observed selectivity of the CK2 inhibitor GW869516X. Compounds targeting PKN3 were discovered and phosphoproteomics identified substrates that indicate target engagement in cells. We anticipate that this molecular resource will aid research in drug discovery and chemical biology.

2.
Nat Chem Biol ; 18(10): 1096-1103, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35799064

RESUMO

The abundance of recorded protein sequence data stands in contrast to the small number of experimentally verified functional annotation. Here we screened a million-membered metagenomic library at ultrahigh throughput in microfluidic droplets for ß-glucuronidase activity. We identified SN243, a genuine ß-glucuronidase with little homology to previously studied enzymes of this type, as a glycoside hydrolase 3 family member. This glycoside hydrolase family contains only one recently added ß-glucuronidase, showing that a functional metagenomic approach can shed light on assignments that are currently 'unpredictable' by bioinformatics. Kinetic analyses of SN243 characterized it as a promiscuous catalyst and structural analysis suggests regions of divergence from homologous glycoside hydrolase 3 members creating a wide-open active site. With a screening throughput of >107 library members per day, picolitre-volume microfluidic droplets enable functional assignments that complement current enzyme database dictionaries and provide bridgeheads for the annotation of unexplored sequence space.


Assuntos
Glucuronidase , Metagenômica , Biblioteca Gênica , Glucuronidase/genética , Glucuronidase/metabolismo , Glicosídeo Hidrolases/química , Metagenoma
3.
Phys Chem Chem Phys ; 26(2): 695-712, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38053511

RESUMO

To survive, many pathogens extract heme from their host organism and break down the porphyrin scaffold to sequester the Fe2+ ion via a heme oxygenase. Recent studies have revealed that certain pathogens can anaerobically degrade heme. Our own research has shown that one such pathway proceeds via NADH-dependent heme degradation, which has been identified in a family of hemoproteins from a range of bacteria. HemS, from Yersinia enterocolitica, is the main focus of this work, along with HmuS (Yersinia pestis), ChuS (Escherichia coli) and ShuS (Shigella dysenteriae). We combine experiments, Energy Landscape Theory, and a bioinformatic investigation to place these homologues within a wider phylogenetic context. A subset of these hemoproteins are known to bind certain DNA promoter regions, suggesting not only that they can catalytically degrade heme, but that they are also involved in transcriptional modulation responding to heme flux. Many of the bacterial species responsible for these hemoproteins (including those that produce HemS, ChuS and ShuS) are known to specifically target oxygen-depleted regions of the gastrointestinal tract. A deeper understanding of anaerobic heme breakdown processes exploited by these pathogens could therefore prove useful in the development of future strategies for disease prevention.


Assuntos
Hemeproteínas , Anaerobiose , Filogenia , Hemeproteínas/metabolismo , Heme/metabolismo , Escherichia coli/metabolismo
4.
J Biol Chem ; 296: 100101, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33214225

RESUMO

Ral GTPases have been implicated as critical drivers of cell growth and metastasis in numerous Ras-driven cancers. We have previously reported stapled peptides, based on the Ral effector RLIP76, that can disrupt Ral signaling. Stapled peptides are short peptides that are locked into their bioactive form using a synthetic brace. Here, using an affinity maturation of the RLIP76 Ral-binding domain, we identified several sequence substitutions that together improve binding to Ral proteins by more than 20-fold. Hits from the selection were rigorously analyzed to determine the contributions of individual residues and two 1.5 Å cocrystal structures of the tightest-binding mutants in complex with RalB revealed key interactions. Insights gained from this maturation were used to design second-generation stapled peptides based on RLIP76 that exhibited vastly improved selectivity for Ral GTPases when compared with the first-generation lead peptide. The binding of second-generation peptides to Ral proteins was quantified and the binding site of the lead peptide on RalB was determined by NMR. Stapled peptides successfully competed with multiple Ral-effector interactions in cellular lysates. Our findings demonstrate how manipulation of a native binding partner can assist in the rational design of stapled peptide inhibitors targeting a protein-protein interaction.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Proteínas ral de Ligação ao GTP/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Calorimetria , Dicroísmo Circular , Fluorescência , Proteínas Ativadoras de GTPase/química , Humanos , Espectroscopia de Ressonância Magnética , Ligação Proteica , Transdução de Sinais , Proteínas ral de Ligação ao GTP/química
5.
Nat Chem Biol ; 16(4): 423-429, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31907373

RESUMO

The most abundant member of the collagen protein family, collagen I (also known as type I collagen; COL1), is composed of one unique (chain B) and two similar (chain A) polypeptides that self-assemble with one amino acid offset into a heterotrimeric triple helix. Given the offset, chain B can occupy either the leading (BAA), middle (ABA) or trailing (AAB) position of the triple helix, yielding three isomeric biomacromolecules with different protein recognition properties. Despite five decades of intensive research, there is no consensus on the position of chain B in COL1. Here, three triple-helical heterotrimers that each contain a putative von Willebrand factor (VWF) and discoidin domain receptor (DDR) recognition sequence from COL1 were designed with chain B permutated in all three positions. AAB demonstrated a strong preference for both VWF and DDR, and also induced higher levels of cellular DDR phosphorylation. Thus, we resolve this long-standing mystery and show that COL1 adopts an AAB register.


Assuntos
Colágeno Tipo I/química , Colágeno Tipo I/metabolismo , Colágeno/química , Sequência de Aminoácidos , Aminoácidos , Colágeno/metabolismo , Biologia Computacional/métodos , Humanos , Modelos Moleculares , Peptídeos/química , Conformação Proteica
6.
Org Biomol Chem ; 19(20): 4380-4396, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34037044

RESUMO

CK2 is a protein kinase that plays important roles in many physio-pathological cellular processes. As such, the development of chemical probes for CK2 has received increasing attention in the past decade with more than 40 lead compounds developed. In this review, we aim to provide the reader with a comprehensive overview of the chemical probes acting outside the highly-conserved ATP-site developed to date. Such probes belong to different classes of molecules spanning from small molecules to peptides, act with a range of mechanisms of action and some of them present themselves as promising tools to investigate the biology of CK2 and therefore develop therapeutics for many disease areas including cancer and COVID-19.


Assuntos
Caseína Quinase II/química , Caseína Quinase II/metabolismo , Sondas Moleculares/metabolismo , Animais , Biocatálise , Descoberta de Drogas , Humanos
7.
Molecules ; 26(7)2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807474

RESUMO

Protein kinases are a large class of enzymes with numerous biological roles and many have been implicated in a vast array of diseases, including cancer and the novel coronavirus infection COVID-19. Thus, the development of chemical probes to selectively target each kinase is of great interest. Inhibition of protein kinases with ATP-competitive inhibitors has historically been the most widely used method. However, due to the highly conserved structures of ATP-sites, the identification of truly selective chemical probes is challenging. In this review, we use the Ser/Thr kinase CK2 as an example to highlight the historical challenges in effective and selective chemical probe development, alongside recent advances in the field and alternative strategies aiming to overcome these problems. The methods utilised for CK2 can be applied to an array of protein kinases to aid in the discovery of chemical probes to further understand each kinase's biology, with wide-reaching implications for drug development.


Assuntos
Caseína Quinase II/metabolismo , Sondas Moleculares/química , Inibidores de Proteínas Quinases/química , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , COVID-19 , Caseína Quinase II/química , Diclororribofuranosilbenzimidazol/química , Diclororribofuranosilbenzimidazol/farmacologia , Humanos , Sondas Moleculares/metabolismo , Naftiridinas/química , Naftiridinas/farmacologia , Fenazinas/química , Fenazinas/farmacologia , Polifenóis/química , Polifenóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia
8.
J Biol Chem ; 294(42): 15505-15516, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31484721

RESUMO

Unlike many other well-characterized bacteria, the opportunistic human pathogen Pseudomonas aeruginosa relies exclusively on the Entner-Doudoroff pathway (EDP) for glycolysis. Pyruvate kinase (PK) is the main "pacemaker" of the EDP, and its activity is also relevant for P. aeruginosa virulence. Two distinct isozymes of bacterial PK have been recognized, PykA and PykF. Here, using growth and expression analyses of relevant PK mutants, we show that PykA is the dominant isoform in P. aeruginosa Enzyme kinetics assays revealed that PykA displays potent K-type allosteric activation by glucose 6-phosphate and by intermediates from the pentose phosphate pathway. Unexpectedly, the X-ray structure of PykA at 2.4 Å resolution revealed that glucose 6-phosphate binds in a pocket that is distinct from the binding site reported for this metabolite in the PK from Mycobacterium tuberculosis (the only other available bacterial PK structure containing bound glucose 6-phosphate). We propose a mechanism by which glucose 6-phosphate binding at the allosteric site communicates with the PykA active site. Taken together, our findings indicate remarkable evolutionary plasticity in the mechanism(s) by which PK senses and responds to allosteric signals.


Assuntos
Proteínas de Bactérias/química , Pseudomonas aeruginosa/enzimologia , Piruvato Quinase/química , Regulação Alostérica , Sítio Alostérico , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Glucose-6-Fosfato/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Modelos Moleculares , Via de Pentose Fosfato , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento , Piruvato Quinase/genética , Piruvato Quinase/metabolismo
9.
J Biol Chem ; 293(37): 14260-14269, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30030382

RESUMO

The glyoxylate shunt bypasses the oxidative decarboxylation steps of the tricarboxylic acid (TCA) cycle, thereby conserving carbon skeletons for gluconeogenesis and biomass production. In Escherichia coli, carbon flux is redirected through the first enzyme of the glyoxylate shunt, isocitrate lyase (ICL), following phosphorylation and inactivation of the TCA cycle enzyme, isocitrate dehydrogenase (ICD), by the kinase/phosphatase, AceK. In contrast, mycobacterial species lack AceK and employ a phosphorylation-insensitive isocitrate dehydrogenase (IDH), which is allosterically activated by the product of ICL activity, glyoxylate. However, Pseudomonas aeruginosa expresses IDH, ICD, ICL, and AceK, raising the question of how these enzymes are regulated to ensure proper flux distribution between the competing pathways. Here, we present the structure, kinetics, and regulation of ICL, IDH, and ICD from P. aeruginosa We found that flux partitioning is coordinated through reciprocal regulation of these enzymes, linking distribution of carbon flux to the availability of the key gluconeogenic precursors, oxaloacetate and pyruvate. Specifically, a greater abundance of these metabolites activated IDH and inhibited ICL, leading to increased TCA cycle flux. Regulation was also exerted through AceK-dependent phosphorylation of ICD; high levels of acetyl-CoA (which would be expected to accumulate when oxaloacetate is limiting) stimulated the kinase activity of AceK, whereas high levels of oxaloacetate stimulated its phosphatase activity. In summary, the TCA cycle-glyoxylate shunt branch point in P. aeruginosa has a complex enzymology that is profoundly different from those in other species characterized to date. Presumably, this reflects its predilection for consuming fatty acids, especially during infection scenarios.


Assuntos
Gluconeogênese , Glioxilatos/metabolismo , Isocitrato Liase/metabolismo , Pseudomonas aeruginosa/metabolismo , Acetilcoenzima A/metabolismo , Ciclo do Ácido Cítrico , Cristalografia por Raios X , Descarboxilação , Escherichia coli/metabolismo , Isocitrato Desidrogenase/antagonistas & inibidores , Isocitrato Desidrogenase/química , Isocitrato Desidrogenase/metabolismo , Isocitrato Liase/antagonistas & inibidores , Isocitrato Liase/química , Cinética , Ácido Oxaloacético/metabolismo , Fosforilação , Pseudomonas aeruginosa/enzimologia
10.
Bioorg Med Chem ; 26(11): 3016-3020, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29759799

RESUMO

Increased CK2 levels are prevalent in many cancers. Combined with the critical role CK2 plays in many cell-signaling pathways, this makes it a prime target for down regulation to fight tumour growth. Herein, we report a fragment-based approach to inhibiting the interaction between CK2α and CK2ß at the α-ß interface of the holoenzyme. A fragment, CAM187, with an IC50 of 44 µM and a molecular weight of only 257 gmol-1 has been identified as the most promising compound. Importantly, the lead fragment only bound at the interface and was not observed in the ATP binding site of the protein when co-crystallised with CK2α. The fragment-like molecules discovered in this study represent unique scaffolds to CK2 inhibition and leave room for further optimisation.


Assuntos
Trifosfato de Adenosina , Sistemas de Liberação de Medicamentos , Indóis/química , Peptídeos e Proteínas de Sinalização Intracelular/química , Bibliotecas de Moléculas Pequenas/síntese química , Trifosfato de Adenosina/química , Ligação Competitiva , Indóis/farmacologia , Concentração Inibidora 50 , Peptídeos e Proteínas de Sinalização Intracelular/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Estrutura Molecular , Peso Molecular , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
11.
Bioorg Med Chem ; 25(13): 3471-3482, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28495381

RESUMO

Recently we reported the discovery of a potent and selective CK2α inhibitor CAM4066. This compound inhibits CK2 activity by exploiting a pocket located outside the ATP binding site (αD pocket). Here we describe in detail the journey that led to the discovery of CAM4066 using the challenging fragment linking strategy. Specifically, we aimed to develop inhibitors by linking a high-affinity fragment anchored in the αD site to a weakly binding warhead fragment occupying the ATP site. Moreover, we describe the remarkable impact that molecular modelling had on the development of this novel chemical tool. The work described herein shows potential for the development of a novel class of CK2 inhibitors.


Assuntos
Compostos de Bifenilo/farmacologia , Descoberta de Drogas , Inibidores de Proteínas Quinases/farmacologia , Sítios de Ligação/efeitos dos fármacos , Compostos de Bifenilo/síntese química , Compostos de Bifenilo/química , Caseína Quinase II/antagonistas & inibidores , Caseína Quinase II/metabolismo , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade
12.
Org Biomol Chem ; 11(16): 2660-75, 2013 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-23467665

RESUMO

We recently reported the use of PSCl3 for the thiophosphorylation of alkylamines where the resulting N-thiophosphoramidate ions could be readily S-alkylated (Chem. Commun., 2011, 47, 6156-6158.). Herein we report the development of this methodology using amino acid, amino sugar, aminonucleoside and aniline substrates. The hydrolysis properties of N-thiophosphoramidate ions and their reactivities towards alkylating agents are also explored. In addition, we demonstrate the application of our approach to the preparation of a small library of compounds, including quinoline-based N,S-dialkylthiophosphoramidates which were tested for antileishmanial activity.


Assuntos
Amidas/química , Amidas/farmacologia , Antiprotozoários/química , Antiprotozoários/farmacologia , Leishmania mexicana/efeitos dos fármacos , Ácidos Fosfóricos/química , Ácidos Fosfóricos/farmacologia , Compostos de Sulfidrila/química , Compostos de Sulfidrila/farmacologia , Acetamidas/química , Alquilantes/química , Alquilação , Amidas/síntese química , Compostos de Anilina/síntese química , Compostos de Anilina/química , Antiprotozoários/síntese química , Desoxiadenosinas/síntese química , Desoxiadenosinas/química , Desoxiguanosina/análogos & derivados , Desoxiguanosina/síntese química , Desoxiguanosina/química , Glucosamina/síntese química , Glucosamina/química , Humanos , Hidrólise , Leishmaniose Cutânea/tratamento farmacológico , Fenilalanina/síntese química , Fenilalanina/química , Ácidos Fosfóricos/síntese química , Fosforilação , Compostos de Sulfidrila/síntese química
13.
Nat Commun ; 14(1): 768, 2023 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-36765057

RESUMO

Tailoring of the activity and specificity of proteases is critical for their utility across industrial, medical and research purposes. However, engineering or evolving protease catalysts is challenging and often labour intensive. Here, we describe a generic method to accelerate this process based on yeast display. We introduce the protease selection system A2Mcap that covalently captures protease catalysts by repurposed alpha-2-macroglobulin (A2Ms). To demonstrate the utility of A2Mcap for protease engineering we exemplify the directed activity and specificity evolution of six serine proteases. This resulted in a variant of Staphylococcus aureus serin-protease-like (Spl) protease SplB, an enzyme used for recombinant protein processing, that no longer requires activation by N-terminal signal peptide removal. SCHEMA-based domain shuffling was used to map the specificity determining regions of Spl proteases, leading to a chimeric scaffold that supports specificity switching via subdomain exchange. The ability of A2Mcap to overcome key challenges en route to tailor-made proteases suggests easier access to such reagents in the future.


Assuntos
alfa 2-Macroglobulinas Associadas à Gravidez , alfa-Macroglobulinas , Humanos , Sinais Direcionadores de Proteínas , Proteínas Recombinantes/genética , Serina Endopeptidases/metabolismo , Serina Proteases/genética , Serina Proteases/metabolismo , alfa-Macroglobulinas/metabolismo
14.
Eur J Med Chem ; 250: 115177, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36753880

RESUMO

The liver isoform of pyruvate kinase (PKL) has gained interest due to its potential capacity to regulate fatty acid synthesis involved in the progression of non-alcoholic fatty liver disease (NAFLD). Here we describe a novel series of PKL modulators that can either activate or inhibit the enzyme allosterically, from a cryptic site at the interface of two protomers in the tetrameric enzyme. Starting from urolithin D, we designed and synthesised 42 new compounds. The effect of these compounds on PKL enzymatic activity was assessed after incubation with cell lysates obtained from a liver cell line. Pronounced activation of PKL activity, up to 3.8-fold, was observed for several compounds at 10 µM, while other compounds were prominent PKL inhibitors reducing its activity to 81% at best. A structure-activity relationship identified linear-shaped sulfone-sulfonamides as activators and non-linear compounds as inhibitors. Crystal structures revealed the conformations of these modulators, which were used as a reference for designing new modulators.


Assuntos
Fígado , Piruvato Quinase , Piruvato Quinase/metabolismo , Fígado/metabolismo , Hepatócitos/metabolismo , Linhagem Celular , Lipogênese
15.
Front Microbiol ; 14: 1195558, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37250041

RESUMO

In the opportunistic human pathogen Pseudomonas aeruginosa (Pae), carbon catabolite repression (CCR) orchestrates the hierarchical utilization of N and C sources, and impacts virulence, antibiotic resistance and biofilm development. During CCR, the RNA chaperone Hfq and the catabolite repression control protein Crc form assemblies on target mRNAs that impede translation of proteins involved in uptake and catabolism of less preferred C sources. After exhaustion of the preferred C-source, translational repression of target genes is relieved by the regulatory RNA CrcZ, which binds to and acts as a decoy for Hfq. Here, we asked whether Crc action can be modulated to relieve CCR after exhaustion of a preferred carbon source. As Crc does not bind to RNA per se, we endeavored to identify an interacting protein. In vivo co-purification studies, co-immunoprecipitation and biophysical assays revealed that Crc binds to Pae strain O1 protein PA1677. Our structural studies support bioinformatics analyzes showing that PA1677 belongs to the isochorismatase-like superfamily. Ectopic expression of PA1677 resulted in de-repression of Hfq/Crc controlled target genes, while in the absence of the protein, an extended lag phase is observed during diauxic growth on a preferred and a non-preferred carbon source. This observations indicate that PA1677 acts as an antagonist of Crc that favors synthesis of proteins required to metabolize non-preferred carbon sources. We present a working model wherein PA1677 diminishes the formation of productive Hfq/Crc repressive complexes on target mRNAs by titrating Crc. Accordingly, we propose the name CrcA (catabolite repression control protein antagonist) for PA1677.

16.
J Med Chem ; 66(14): 9881-9893, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37433017

RESUMO

Angiotensin-converting enzyme 2 (ACE2) is a metalloprotease that cleaves angiotensin II, a peptide substrate involved in the regulation of hypertension. Here, we identified a series of constrained bicyclic peptides, Bicycle, inhibitors of human ACE2 by panning highly diverse bacteriophage display libraries. These were used to generate X-ray crystal structures which were used to inform the design of additional Bicycles with increased affinity and inhibition of ACE2 enzymatic activity. This novel structural class of ACE2 inhibitors is among the most potent ACE2 inhibitors yet described in vitro, representing a valuable tool to further probe ACE2 function and for potential therapeutic utility.


Assuntos
Enzima de Conversão de Angiotensina 2 , Carboxipeptidases , Humanos , Carboxipeptidases/química , Peptidil Dipeptidase A , Ciclismo , Peptídeos/farmacologia , Angiotensina II , Fragmentos de Peptídeos
17.
Nat Commun ; 14(1): 3583, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37328472

RESUMO

COVID-19 has stimulated the rapid development of new antibody and small molecule therapeutics to inhibit SARS-CoV-2 infection. Here we describe a third antiviral modality that combines the drug-like advantages of both. Bicycles are entropically constrained peptides stabilized by a central chemical scaffold into a bi-cyclic structure. Rapid screening of diverse bacteriophage libraries against SARS-CoV-2 Spike yielded unique Bicycle binders across the entire protein. Exploiting Bicycles' inherent chemical combinability, we converted early micromolar hits into nanomolar viral inhibitors through simple multimerization. We also show how combining Bicycles against different epitopes into a single biparatopic agent allows Spike from diverse variants of concern (VoC) to be targeted (Alpha, Beta, Delta and Omicron). Finally, we demonstrate in both male hACE2-transgenic mice and Syrian golden hamsters that both multimerized and biparatopic Bicycles reduce viraemia and prevent host inflammation. These results introduce Bicycles as a potential antiviral modality to tackle new and rapidly evolving viruses.


Assuntos
COVID-19 , SARS-CoV-2 , Masculino , Animais , Cricetinae , Camundongos , Antivirais/farmacologia , Peptídeos/farmacologia , Anticorpos , Mesocricetus , Camundongos Transgênicos , Glicoproteína da Espícula de Coronavírus/genética
18.
Chembiochem ; 13(16): 2374-83, 2012 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-23070966

RESUMO

The major human pathogen Streptococcus pneumoniae plays a key role in several disease states including septicaemia, meningitis and community-acquired pneumonia. Although vaccines against S. pneumoniae are available as prophylactics, there remains a need to identify and characterise novel chemical entities that can treat the diseases caused by this pathogen. S. pneumoniae expresses three sialidases, enzymes that cleave sialic acid from carbohydrate-based surface molecules. Two of these enzymes, NanA and NanB, have been implicated in the pathogenesis of S. pneumoniae and are considered to be validated drug targets. Here we report our studies on the synthesis and structural characterisation of novel NanB-selective inhibitors that are inspired by the ß-amino-sulfonic acid family of buffers.


Assuntos
Inibidores Enzimáticos/farmacologia , Himecromona/análogos & derivados , Neuraminidase/antagonistas & inibidores , Streptococcus pneumoniae/enzimologia , Ácidos Sulfônicos/farmacologia , Cristalografia por Raios X , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Himecromona/síntese química , Himecromona/química , Himecromona/farmacologia , Modelos Moleculares , Estrutura Molecular , Neuraminidase/química , Neuraminidase/metabolismo , Relação Estrutura-Atividade , Ácidos Sulfônicos/síntese química , Ácidos Sulfônicos/química
19.
Acta Crystallogr F Struct Biol Commun ; 78(Pt 10): 348-353, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36189718

RESUMO

The small molecule belumosudil was initially identified as a selective inhibitor of Rho-associated coiled-coil kinase 2 (ROCK2) and has recently been approved for the treatment of graft-versus-host disease. However, recent studies have shown that many of the phenotypes displayed upon treatment with belumosudil were due to CK2α inhibition. CK2α is in itself a very promising therapeutic target for a range of conditions and has recently been put forward as a potential treatment for COVID-19. Belumosudil presents a promising starting point for the development of future CK2α inhibitors as it provides a safe, potent and orally bioavailable scaffold. Therefore, several of the major hurdles in drug development have already been overcome. Here, the crystal structure of belumosudil bound to the ATP site of CK2α is presented. This crystal structure combined with modelling studies further elucidates how belumosudil could be developed into a selective and potent CK2α or ROCK2 inhibitor.


Assuntos
COVID-19 , Caseína Quinase II/metabolismo , Quinases Associadas a rho , Acetamidas , Trifosfato de Adenosina , Cristalografia por Raios X , Humanos , Quinases Associadas a rho/genética
20.
Chem Commun (Camb) ; 58(30): 4791-4794, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35343996

RESUMO

In this work, an iterative cycle of enzymatic assays, X-ray crystallography, molecular modelling and cellular assays were used to develop a functionalisable chemical probe for the CK2α/ß PPI. The lead peptide, P8C9, successfully binds to CK2α at the PPI site, is easily synthesisable and functionalisable, highly stable in serum and small enough to accommodate further optimisation.


Assuntos
Caseína Quinase II , Peptídeos Cíclicos , Caseína Quinase II/química , Caseína Quinase II/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Peptídeos , Peptídeos Cíclicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA