Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ther Nucleic Acids ; 35(2): 102224, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38933259

RESUMO

Locked nucleic acids (LNAs) are a subtype of antisense oligonucleotides (ASOs) that are characterized by a bridge within the sugar moiety. LNAs owe their robustness to this chemical modification, which as the name suggests, locks it in one conformation. This perspective includes two components: a general overview on ASOs from one side and on delivery issues focusing on lipid nanoparticles (LNPs) on the other side. Throughout, a screening of the ongoing clinical trials involving ASOs is given, as well as a take on the versatility and challenges of using LNAs. Finally, we highlight the potential of LNPs as carriers for the successful delivery of LNAs.

2.
Adv Drug Deliv Rev ; 205: 115175, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38218350

RESUMO

mRNA-Lipid nanoparticles (LNPs) are at the forefront of global medical research. With the development of mRNA-LNP vaccines to combat the COVID-19 pandemic, the clinical potential of this platform was unleashed. Upon administering 16 billion doses that protected billions of people, it became clear that a fraction of them witnessed mild and in some cases even severe adverse effects. Therefore, it is paramount to define the safety along with the therapeutic efficacy of the mRNA-LNP platform for the successful translation of new genetic medicines based on this technology. While mRNA was the effector molecule of this platform, the ionizable lipid component of the LNPs played an indispensable role in its success. However, both of these components possess the ability to induce undesired immunostimulation, which is an area that needs to be addressed systematically. The immune cell agitation caused by this platform is a two-edged sword as it may prove beneficial for vaccination but detrimental to other applications. Therefore, a key challenge in advancing the mRNA-LNP drug delivery platform from bench to bedside is understanding the immunostimulatory behavior of these components. Herein, we provide a detailed overview of the structural modifications and immunogenicity of synthetic mRNA. We discuss the effect of ionizable lipid structure on LNP functionality and offer a mechanistic overview of the ability of LNPs to elicit an immune response. Finally, we shed some light on the current status of this technology in clinical trials and discuss a few challenges to be addressed to advance the field.


Assuntos
Lipossomos , Nanopartículas , Pandemias , Humanos , Imunização , RNA Mensageiro/genética , Vacinas de mRNA , Lipídeos , RNA Interferente Pequeno
3.
Bioact Mater ; 21: 394-402, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36185740

RESUMO

Ever since its mechanism was discovered back in 2012, the CRISPR/Cas9 system have revolutionized the field of genome editing. While at first it was seen as a therapeutic tool mostly relevant for curing genetic diseases, it has been recently shown to also hold the potential to become a clinically relevant therapy for cancer. However, there are multiple challenges that must be addressed prior to clinical testing. Predominantly, the safety of the system when used for in-vivo therapies, including off-target activity and the effects of the double strand break induction on genomic stability. Here, we will focus on the inherent challenges in the CRISPR/Cas9 system and discuss various opportunities to overcoming these challenges.

4.
Mol Ther Nucleic Acids ; 31: 105-121, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36618262

RESUMO

Severe combined immunodeficiency (SCID) is a group of disorders caused by mutations in genes involved in the process of lymphocyte maturation and function. CRISPR-Cas9 gene editing of the patient's own hematopoietic stem and progenitor cells (HSPCs) ex vivo could provide a therapeutic alternative to allogeneic hematopoietic stem cell transplantation, the current gold standard for treatment of SCID. To eliminate the need for scarce patient samples, we engineered genotypes in healthy donor (HD)-derived CD34+ HSPCs using CRISPR-Cas9/rAAV6 gene-editing, to model both SCID and the therapeutic outcomes of gene-editing therapies for SCID via multiplexed homology-directed repair (HDR). First, we developed a SCID disease model via biallelic knockout of genes critical to the development of lymphocytes; and second, we established a knockin/knockout strategy to develop a proof-of-concept single-allelic gene correction. Based on these results, we performed gene correction of RAG2-SCID patient-derived CD34+ HSPCs that successfully developed into CD3+ T cells with diverse TCR repertoires in an in vitro T cell differentiation platform. In summary, we present a strategy to determine the optimal configuration for CRISPR-Cas9 gene correction of SCID using HD-derived CD34+ HSPCs, and the feasibility of translating this gene correction approach in patient-derived CD34+ HSPCs.

5.
Adv Sci (Weinh) ; 10(21): e2301377, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37171801

RESUMO

Multiple myeloma (MM) is a cancer of differentiated plasma cells that occurs in the bone marrow (BM). Despite the recent advancements in drug development, most patients with MM eventually relapse and the disease remains incurable. RNA therapy delivered via lipid nanoparticles (LNPs) has the potential to be a promising cancer treatment, however, its clinical implementation is limited due to inefficient delivery to non-hepatic tissues. Here, targeted (t)LNPs designed for delivery of RNA payload to MM cells are presented. The tLNPs consist of a novel ionizable lipid and are coated with an anti-CD38 antibody (αCD38-tLNPs). To explore their therapeutic potential, it is demonstrated that LNPs encapsulating small interference RNA (siRNA) against cytoskeleton-associated protein 5 (CKAP5) lead to a ≈90% decrease in cell viability of MM cells in vitro. Next, a new xenograft MM mouse model is employed, which clinically resembles the human disease and demonstrates efficient homing of MM cells to the BM. Specific delivery of αCD38-tLNPs to BM-residing and disseminated MM cells and the improvement in therapeutic outcome of MM-bearing mice treated with αCD38-tLNPs-siRNA-CKAP5 are shown. These results underscore the potential of RNA therapeutics for treatment of MM and the importance of developing effective targeted delivery systems and reliable preclinical models.


Assuntos
Mieloma Múltiplo , Humanos , Animais , Camundongos , Mieloma Múltiplo/tratamento farmacológico , Medula Óssea , Recidiva Local de Neoplasia , RNA Interferente Pequeno/uso terapêutico
6.
Nat Commun ; 12(1): 3042, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34031394

RESUMO

Controlling off-target editing activity is one of the central challenges in making CRISPR technology accurate and applicable in medical practice. Current algorithms for analyzing off-target activity do not provide statistical quantification, are not sufficiently sensitive in separating signal from noise in experiments with low editing rates, and do not address the detection of translocations. Here we present CRISPECTOR, a software tool that supports the detection and quantification of on- and off-target genome-editing activity from NGS data using paired treatment/control CRISPR experiments. In particular, CRISPECTOR facilitates the statistical analysis of NGS data from multiplex-PCR comparative experiments to detect and quantify adverse translocation events. We validate the observed results and show independent evidence of the occurrence of translocations in human cell lines, after genome editing. Our methodology is based on a statistical model comparison approach leading to better false-negative rates in sites with weak yet significant off-target activity.


Assuntos
Sistemas CRISPR-Cas , Biologia Computacional/métodos , Edição de Genes/métodos , Algoritmos , Proteínas de Ligação a DNA/genética , Células HEK293 , Proteínas de Homeodomínio/genética , Humanos , Proteínas Nucleares/genética , Software , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA