RESUMO
The COVID-19 pandemic has profoundly impacted global economies and healthcare systems, revealing critical vulnerabilities in both. In response, our study introduces a groundbreaking method for the detection of SARS-CoV-2 cDNA, leveraging Luminescence resonance energy transfer (LRET) between upconversion nanoparticles (UCNPs) and gold nanoparticles (AuNPs) to achieve an unprecedented detection limit of 242 femtomolar (fM). This innovative sensing platform utilizes UCNPs conjugated with one primer and AuNPs with another, targeting the 5' and 3' ends of the SARS-CoV-2 cDNA, respectively, enabling precise differentiation of mismatched DNA sequences and significantly enhancing detection specificity. Through rigorous experimental analysis, we established a quenching efficiency range from 10.4\% to 73.6\%, with an optimal midpoint of 42\%, thereby demonstrating the superior sensitivity of our method. By comparing the quenching efficiency of mismatched DNAs to the target DNA, we identified an optimal DNA:UCNP:AuNP ratio that ensures accurate detection. Our comparative analysis with existing SARS-CoV-2 detection methods revealed that our approach not only provides a lower detection limit but also offers higher specificity and potential for rapid, on-site testing. This study demonstrates the superior sensitivity and specificity of using UCNPs and AuNPs for SARS-CoV-2 cDNA detection, offering a significant advancement in rapid, accessible diagnostic technologies. Our method, characterized by its low detection limit and high precision, represents a critical step forward in managing current and future viral outbreaks, contributing to the enhancement of global healthcare responsiveness and infectious disease control.
RESUMO
In a viral pandemic, a few important tests are required for successful containment of the virus and reduction in severity of the infection. Among those tests, a test for the neutralizing ability of an antibody is crucial for assessment of population immunity gained through vaccination, and to test therapeutic value of antibodies made to counter the infections. Here, we report a sensitive technique to detect the relative neutralizing strength of various antibodies against the SARS-CoV-2 virus. We used bright, photostable, background-free, fluorescent upconversion nanoparticles conjugated with SARS-CoV-2 receptor binding domain as a phantom virion. A glass bottom plate coated with angiotensin-converting enzyme 2 (ACE-2) protein imitates the target cells. When no neutralizing IgG antibody was present in the sample, the particles would bind to the ACE-2 with high affinity. In contrast, a neutralizing antibody can prevent particle attachment to the ACE-2-coated substrate. A prototype system consisting of a custom-made confocal microscope was used to quantify particle attachment to the substrate. The sensitivity of this assay can reach 4.0 ng/ml and the dynamic range is from 1.0 ng/ml to 3.2 [Formula: see text]g/ml. This is to be compared to 19 ng/ml sensitivity of commercially available kits.
Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Teste Sorológico para COVID-19 , COVID-19/imunologia , Nanopartículas/química , SARS-CoV-2/imunologia , Enzima de Conversão de Angiotensina 2/química , Fluorimunoensaio , Humanos , Testes de NeutralizaçãoRESUMO
In a viral pandemic, a few important tests are required for successful containment of the virus and reduction in severity of the infection. Among those tests, a test for the neutralizing ability of an antibody is crucial for assessment of population immunity gained through vaccination, and to test therapeutic value of antibodies made to counter the infections. Here, we report a sensitive technique to detect the relative neutralizing strength of various antibodies against the SARS-CoV-2 virus. We used bright, photostable, background-free, fluorescent upconversion nanoparticles conjugated with SARS-CoV-2 receptor binding domain as a phantom virion. A glass bottom plate coated with angiotensin-converting enzyme 2 (ACE-2) protein imitates the target cells. When no neutralizing IgG antibody was present in the sample, the particles would bind to the ACE-2 with high affinity. In contrast, a neutralizing antibody can prevent particle attachment to the ACE-2-coated substrate. A prototype system consisting of a custom-made confocal microscope was used to quantify particle attachment to the substrate. The sensitivity of this assay can reach 4.0 ng/ml and the dynamic range is from 1.0 ng/ml to 3.2 {\mu}g/ml. This is to be compared to 19 ng/ml sensitivity of commercially available kits.