Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 43(2): 187-198, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36639899

RESUMO

We studied how histamine and GABA release from axons originating from the hypothalamic tuberomammillary nucleus (TMN) and projecting to the prefrontal cortex (PFC) influence circuit processing. We optostimulated histamine/GABA from genetically defined TMN axons that express the histidine decarboxylase gene (TMNHDC axons). Whole-cell recordings from PFC neurons in layer 2/3 of prelimbic, anterior cingulate, and infralimbic regions were used to monitor excitability before and after optostimulated histamine/GABA release in male and female mice. We found that histamine-GABA release influences the PFC through actions on distinct neuronal types: the histamine stimulates fast-spiking interneurons; and the released GABA enhances tonic (extrasynaptic) inhibition on pyramidal cells (PyrNs). For fast-spiking nonaccommodating interneurons, histamine released from TMNHDC axons induced additive gain changes, which were blocked by histamine H1 and H2 receptor antagonists. The excitability of other fast-spiking interneurons in the PFC was not altered. In contrast, the GABA released from TMNHDC axons predominantly produced divisive gain changes in PyrNs, increasing their resting input conductance, and decreasing the slope of the input-output relationship. This inhibitory effect on PyrNs was not blocked by histamine receptor antagonists but was blocked by GABAA receptor antagonists. Across the adult life span (from 3 to 18 months of age), the GABA released from TMNHDC axons in the PFC inhibited PyrN excitability significantly more in older mice. For individuals who maintain cognitive performance into later life, the increases in TMNHDC GABA modulation of PyrNs during aging could enhance information processing and be an adaptive mechanism to buttress cognition.SIGNIFICANCE STATEMENT The hypothalamus controls arousal state by releasing chemical neurotransmitters throughout the brain to modulate neuronal excitability. Evidence is emerging that the release of multiple types of neurotransmitters may have opposing actions on neuronal populations in key cortical regions. This study demonstrates for the first time that the neurotransmitters histamine and GABA are released in the prefrontal cortex from axons originating from the tuberomammillary nucleus of the hypothalamus. This work demonstrates how hypothalamic modulation of neuronal excitability is maintained throughout adult life, highlighting an unexpected aspect of the aging process that may help maintain cognitive abilities.


Assuntos
Liberação de Histamina , Histamina , Feminino , Masculino , Camundongos , Animais , Histamina/farmacologia , Potenciais de Ação/fisiologia , Células Piramidais/fisiologia , Interneurônios/fisiologia , Axônios , Córtex Pré-Frontal/fisiologia , Ácido gama-Aminobutírico/farmacologia
2.
J Neurosci ; 36(44): 11171-11184, 2016 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-27807161

RESUMO

Zolpidem, a GABAA receptor-positive modulator, is the gold-standard drug for treating insomnia. Zolpidem prolongs IPSCs to decrease sleep latency and increase sleep time, effects that depend on α2 and/or α3 subunit-containing receptors. Compared with natural NREM sleep, zolpidem also decreases the EEG power, an effect that depends on α1 subunit-containing receptors, and which may make zolpidem-induced sleep less optimal. In this paper, we investigate whether zolpidem needs to potentiate only particular GABAergic pathways to induce sleep without reducing EEG power. Mice with a knock-in F77I mutation in the GABAA receptor γ2 subunit gene are zolpidem-insensitive. Using these mice, GABAA receptors in the frontal motor neocortex and hypothalamic (tuberomammillary nucleus) histaminergic-neurons of γ2I77 mice were made selectively sensitive to zolpidem by genetically swapping the γ2I77 subunits with γ2F77 subunits. When histamine neurons were made selectively zolpidem-sensitive, systemic administration of zolpidem shortened sleep latency and increased sleep time. But in contrast to the effect of zolpidem on wild-type mice, the power in the EEG spectra of NREM sleep was not decreased, suggesting that these EEG power-reducing effects of zolpidem do not depend on reduced histamine release. Selective potentiation of GABAA receptors in the frontal cortex by systemic zolpidem administration also reduced sleep latency, but less so than for histamine neurons. These results could help with the design of new sedatives that induce a more natural sleep. SIGNIFICANCE STATEMENT: Many people who find it hard to get to sleep take sedatives. Zolpidem (Ambien) is the most widely prescribed "sleeping pill." It makes the inhibitory neurotransmitter GABA work better at its receptors throughout the brain. The sleep induced by zolpidem does not resemble natural sleep because it produces a lower power in the brain waves that occur while we are sleeping. We show using mouse genetics that zolpidem only needs to work on specific parts and cell types of the brain, including histamine neurons in the hypothalamus, to induce sleep but without reducing the power of the sleep. This knowledge could help in the design of sleeping pills that induce a more natural sleep.


Assuntos
Neocórtex/fisiologia , Neurônios/fisiologia , Piridinas/administração & dosagem , Receptores de GABA-A/metabolismo , Sono/efeitos dos fármacos , Sono/fisiologia , Animais , Relação Dose-Resposta a Droga , Feminino , Histamínicos/administração & dosagem , Hipnóticos e Sedativos/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neocórtex/citologia , Neocórtex/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Medicamentos Indutores do Sono/administração & dosagem , Zolpidem
3.
J Neurosci ; 34(40): 13326-35, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25274812

RESUMO

How general anesthetics cause loss of consciousness is unknown. Some evidence points toward effects on the neocortex causing "top-down" inhibition, whereas other findings suggest that these drugs act via subcortical mechanisms, possibly selectively stimulating networks promoting natural sleep. To determine whether some neuronal circuits are affected before others, we used Morlet wavelet analysis to obtain high temporal resolution in the time-varying power spectra of local field potentials recorded simultaneously in discrete brain regions at natural sleep onset and during anesthetic-induced loss of righting reflex in rats. Although we observed changes in the local field potentials that were anesthetic-specific, there were some common changes in high-frequency (20-40 Hz) oscillations (reductions in frequency and increases in power) that could be detected at, or before, sleep onset and anesthetic-induced loss of righting reflex. For propofol and natural sleep, these changes occur first in the thalamus before changes could be detected in the neocortex. With dexmedetomidine, the changes occurred simultaneously in the thalamus and neocortex. In addition, the phase relationships between the low-frequency (1-4 Hz) oscillations in thalamic nuclei and neocortical areas are essentially the same for natural sleep and following dexmedetomidine administration, but a sudden change in phase, attributable to an effect in the central medial thalamus, occurs at the point of dexmedetomidine loss of righting reflex. Our data are consistent with the central medial thalamus acting as a key hub through which general anesthesia and natural sleep are initiated.


Assuntos
Anestésicos Intravenosos/farmacologia , Neocórtex/efeitos dos fármacos , Vias Neurais/fisiologia , Propofol/farmacologia , Sono/fisiologia , Tálamo/efeitos dos fármacos , Animais , Ondas Encefálicas/efeitos dos fármacos , Estimulação Elétrica , Eletrodos Implantados , Eletroencefalografia , Eletromiografia , Neocórtex/fisiologia , Vias Neurais/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Análise Espectral , Tálamo/fisiologia
4.
Pflugers Arch ; 467(5): 989-99, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25482670

RESUMO

In this study, we explored the possibility that two-pore domain potassium (K2P) channels are sufficient to support action potential (AP) generation in the absence of conventional voltage-gated potassium (KV) channels. Hodgkin-Huxley parameters were used to mimic the presence of voltage-gated sodium (NaV) channels in HEK-293 cells. Recombinant expression of either TREK-1 or TASK-3 channels was then used to generate a hyperpolarised resting membrane potential (RMP) leading to the characteristic non-linear current-voltage relationship expected of a K2P-mediated conductance. During conductance simulation experiments, both TASK-3 and TREK-1 channels were able to repolarise the membrane once AP threshold was reached, and at physiologically relevant current densities, this K2P-mediated conductance supported sustained AP firing. Moreover, the magnitude of the conductance correlated with the speed of the AP rise in a manner predicted from our computational studies. We discuss the physiological impact of axonal K2P channels and speculate on the possible clinical relevance of K2P channel modulation when considering the actions of general and local anaesthetics.


Assuntos
Potenciais de Ação/fisiologia , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Potássio/metabolismo , Humanos , Potenciais da Membrana/fisiologia , Técnicas de Patch-Clamp/métodos , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo
5.
J Neurosci ; 33(33): 13431-5, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23946400

RESUMO

Inhibition of GABAA receptors by Cu(2+) has been appreciated for some time, but differences between synaptic and extrasynaptic GABAA receptors have not been explored. We show that Cu(2+) potently blocks steady-state GABA currents mediated by extrasynaptic δ subunit-containing GABAA receptors (δ-GABAARs) with an IC50 of 65 nM. This compares with an IC50 of 85 µM for synaptic γ subunit-containing GABAARs (γ-GABAARs). To test the significance of this subunit selectivity, we examined the blocking action of Cu(2+) on neurons of the mouse cerebellum and striatum, brain regions that are known to express both types of receptor. Cu(2+) was shown to significantly reduce tonic inhibition mediated by extrasynaptic δ-GABAARs with little action on phasic inhibition mediated by conventional synaptic γ-GABAARs. We speculate on the implications of these observations for conditions, such as Wilson's disease, that can involve raised Cu(2+) levels in the brain.


Assuntos
Cerebelo/metabolismo , Cobre/metabolismo , Corpo Estriado/metabolismo , Receptores de GABA-A/metabolismo , Animais , Cerebelo/efeitos dos fármacos , Cobre/farmacologia , Corpo Estriado/efeitos dos fármacos , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Transfecção
6.
Curr Res Neurobiol ; 6: 100130, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694514

RESUMO

A fundamental problem in neuroscience is how neurons select for their many inputs. A common assumption is that a neuron's selectivity is largely explained by differences in excitatory synaptic input weightings. Here we describe another solution to this important problem. We show that within the first order visual thalamus, the type of inhibition provided by thalamic interneurons has the potential to alter the input selectivity of thalamocortical neurons. To do this, we developed conductance injection protocols to compare how different types of synchronous and asynchronous GABA release influence thalamocortical excitability in response to realistic patterns of retinal ganglion cell input. We show that the asynchronous GABA release associated with tonic inhibition is particularly efficient at maintaining information content, ensuring that thalamocortical neurons can distinguish between their inputs. We propose a model where alterations in GABA release properties results in rapid changes in input selectivity without requiring structural changes in the network.

7.
J Neurosci ; 32(38): 13062-75, 2012 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-22993424

RESUMO

The activity of histaminergic neurons in the tuberomammillary nucleus (TMN) of the hypothalamus correlates with an animal's behavioral state and maintains arousal. We examined how GABAergic inputs onto histaminergic neurons regulate this behavior. A prominent hypothesis, the "flip-flop" model, predicts that increased and sustained GABAergic drive onto these cells promotes sleep. Similarly, because of the histaminergic neurons' key hub-like place in the arousal circuitry, it has also been suggested that anesthetics such as propofol induce loss of consciousness by acting primarily at histaminergic neurons. We tested both these hypotheses in mice by genetically removing ionotropic GABA(A) or metabotropic GABA(B) receptors from histidine decarboxylase-expressing neurons. At the cellular level, histaminergic neurons deficient in synaptic GABA(A) receptors were significantly more excitable and were insensitive to the anesthetic propofol. At the behavioral level, EEG profiles were recorded in nontethered mice over 24 h. Surprisingly, GABAergic transmission onto histaminergic neurons had no effect in regulating the natural sleep-wake cycle and, in the case of GABA(A) receptors, for propofol-induced loss of righting reflex. The latter finding makes it unlikely that the histaminergic TMN has a central role in anesthesia. GABA(B) receptors on histaminergic neurons were dispensable for all behaviors examined. Synaptic inhibition of histaminergic cells by GABA(A) receptors, however, was essential for habituation to a novel environment.


Assuntos
Neurônios GABAérgicos/fisiologia , Histamina/metabolismo , Inibição Neural/fisiologia , Sono/fisiologia , Inconsciência/fisiopatologia , Vigília/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Animais Recém-Nascidos , Biofísica , Encéfalo/metabolismo , Estimulação Elétrica , Eletroencefalografia , Eletromiografia , Comportamento Exploratório/efeitos dos fármacos , Comportamento Exploratório/fisiologia , Neurônios GABAérgicos/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Habituação Psicofisiológica/genética , Histidina Descarboxilase/genética , Histidina Descarboxilase/metabolismo , Hipnóticos e Sedativos/efeitos adversos , Região Hipotalâmica Lateral/citologia , Técnicas In Vitro , Lisina/análogos & derivados , Lisina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Inibição Neural/efeitos dos fármacos , Inibição Neural/genética , Técnicas de Patch-Clamp , Propofol/efeitos adversos , Proteínas/genética , Proteínas/metabolismo , RNA Mensageiro/metabolismo , RNA não Traduzido , Receptores de GABA-A/deficiência , Reflexo/efeitos dos fármacos , Reflexo/genética , Sono/efeitos dos fármacos , Sono/genética , Inconsciência/induzido quimicamente , Vigília/genética , beta-Galactosidase/metabolismo
8.
J Neurosci ; 32(11): 3887-97, 2012 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-22423109

RESUMO

High-affinity extrasynaptic GABA(A) receptors are persistently activated by the low ambient GABA levels that are known to be present in extracellular space. The resulting tonic conductance generates a form of shunting inhibition that is capable of altering cellular and network behavior. It has been suggested that this tonic inhibition will be enhanced by neurosteroids, antiepileptics, and sedative/hypnotic drugs. However, we show that the ability of sedative/hypnotic drugs to enhance tonic inhibition in the mouse cerebellum will critically depend on ambient GABA levels. For example, we show that the intravenous anesthetic propofol enhances tonic inhibition only when ambient GABA levels are <100 nm. More surprisingly, the actions of the sleep-promoting drug 4,5,6,7-tetrahydroisothiazolo-[5,4-c]pyridin-3-ol (THIP) are attenuated at ambient GABA levels of just 20 nm. In contrast, our data suggest that neurosteroid enhancement of tonic inhibition will be greater at high ambient GABA concentrations. We present a model that takes into account realistic estimates of ambient GABA levels and predicted extrasynaptic GABA(A) receptor numbers when considering the ability of sedative/hypnotic drugs to enhance tonic inhibition. These issues will be important when considering drug strategies designed to target extrasynaptic GABA(A) receptors in the treatment of sleep disorders and other neurological conditions.


Assuntos
Sistemas de Liberação de Medicamentos , Hipnóticos e Sedativos/administração & dosagem , Hipnóticos e Sedativos/metabolismo , Receptores de GABA-A/metabolismo , Sinapses/metabolismo , Animais , Linhagem Celular Transformada , Sistemas de Liberação de Medicamentos/métodos , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Cultura de Órgãos , Sinapses/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo
9.
J Neurosci ; 31(2): 753-63, 2011 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-21228184

RESUMO

High-affinity extrasynaptic GABA(A) receptors (GABA(A)Rs) are a prominent feature of cerebellar granule neurons and thalamic relay neurons. In both cell types, the presence of synaptic glomeruli would be expected to promote activation of these GABA(A)Rs, contributing to phasic spillover-mediated currents and tonic inhibition. However, the precise role of different receptor subtypes in these two phenomena is unclear. To address this question, we made recordings from neurons in acute brain slices from mice, and from tsA201 cells expressing recombinant GABA(A)Rs. We found that δ subunit-containing GABA(A)Rs of both cerebellar granule neurons and thalamic relay neurons of the lateral geniculate nucleus contributed to tonic conductance caused by ambient GABA but not to spillover-mediated currents. In the presence of a low "ambient" GABA concentration, recombinant "extrasynaptic" δ subunit-containing GABA(A)Rs exhibited profound desensitization, rendering them insensitive to brief synaptic- or spillover-like GABA transients. Together, our results demonstrate that phasic spillover and tonic inhibition reflect the activation of distinct receptor populations.


Assuntos
Receptores de GABA-A/fisiologia , Ácido gama-Aminobutírico/fisiologia , Animais , Linhagem Celular , Cerebelo/citologia , Cerebelo/fisiologia , Humanos , Técnicas In Vitro , Potenciais Pós-Sinápticos Inibidores , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/fisiologia , Técnicas de Patch-Clamp , Subunidades Proteicas/fisiologia , Ratos , Receptores de GABA-A/genética , Sinapses/fisiologia , Tálamo/citologia , Tálamo/fisiologia , Transfecção
10.
Proc Natl Acad Sci U S A ; 106(41): 17546-51, 2009 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-19805135

RESUMO

TASK channels are acid-sensitive and anesthetic-activated members of the family of two-pore-domain potassium channels. We have made the surprising discovery that the genetic ablation of TASK-3 channels eliminates a specific type of theta oscillation in the cortical electroencephalogram (EEG) resembling type II theta (4-9 Hz), which is thought to be important in processing sensory stimuli before initiating motor activity. In contrast, ablation of TASK-1 channels has no effect on theta oscillations. Despite the absence of type II theta oscillations in the TASK-3 knockout (KO) mice, the related type I theta, which has certain neuronal pathways in common and is involved in exploratory behavior, is unaffected. In addition to the absence of type II theta oscillations, the TASK-3 KO animals show marked alterations in both anesthetic sensitivity and natural sleep behavior. Their sensitivity to halothane, a potent activator of TASK channels, is greatly reduced, whereas their sensitivity to cyclopropane, which does not activate TASK-3 channels, is unchanged. The TASK-3 KO animals exhibit a slower progression from their waking to sleeping states and, during their sleeping period, their sleep episodes as well as their REM theta oscillations are more fragmented. These results imply a previously unexpected role for TASK-3 channels in the cellular mechanisms underlying these behaviors and suggest that endogenous modulators of these channels may regulate theta oscillations.


Assuntos
Canais de Potássio de Domínios Poros em Tandem/genética , Sono/fisiologia , Animais , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Eletroencefalografia , Eletromiografia , Genótipo , Camundongos , Camundongos Knockout , Oscilometria , Canais de Potássio de Domínios Poros em Tandem/deficiência , Vigília/fisiologia
11.
J Neurosci ; 29(7): 2177-87, 2009 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-19228970

RESUMO

The GABA(A) receptor has been identified as the single most important target for the intravenous anesthetic propofol. How effects at this receptor are then translated into a loss of consciousness, however, remains a mystery. One possibility is that anesthetics act on natural sleep pathways. Here, we test this hypothesis by exploring the anesthetic sensitivities of GABAergic synaptic currents in three specific brain nuclei that are known to be involved in sleep. Using whole-cell electrophysiology, we have recorded GABAergic IPSCs from the tuberomammillary nucleus (TMN), the perifornical area (Pef), and the locus ceruleus (LC) in brain slices from both wild-type mice and mice that carry a specific mutation in the GABA(A) receptor beta(3) subunit (N265M), which greatly reduces their sensitivity to propofol, but not to the neurosteroid alphaxalone. We find that this in vivo pattern of anesthetic sensitivity is mirrored in the hypothalamic TMN and Pef nuclei, consistent with their role as direct anesthetic targets. In contrast, anesthetic sensitivity in the LC was unaffected by the beta(3)N265M mutation, ruling out this nucleus as a major target for propofol. In support of the hypothesis that orexinergic neurons in the Pef are involved in propofol anesthesia, we further show that these neurons are selectively inhibited by GABAergic drugs in vivo during anesthesia, and that a modulation in the activity of Pef neurons alone can affect loss of righting reflex. Overall, our results support the idea that GABAergic anesthetics such as propofol exert their effects, at least in part, by modulating hypothalamic sleep pathways.


Assuntos
Anestésicos Gerais/farmacologia , Hipotálamo/efeitos dos fármacos , Receptores de GABA-A/efeitos dos fármacos , Receptores de GABA-A/genética , Sono/efeitos dos fármacos , Animais , Técnicas de Introdução de Genes , Região Hipotalâmica Lateral/efeitos dos fármacos , Região Hipotalâmica Lateral/metabolismo , Hipotálamo/metabolismo , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Locus Cerúleo/efeitos dos fármacos , Locus Cerúleo/metabolismo , Masculino , Camundongos , Camundongos Mutantes , Camundongos Transgênicos , Vias Neurais/efeitos dos fármacos , Vias Neurais/metabolismo , Neuropeptídeos/metabolismo , Orexinas , Técnicas de Cultura de Órgãos , Propofol/farmacologia , Ratos , Ratos Endogâmicos F344 , Ratos Sprague-Dawley , Sono/fisiologia , Ácido gama-Aminobutírico/metabolismo
12.
J Neurosci ; 27(10): 2560-9, 2007 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-17344393

RESUMO

Tonic inhibition has emerged as a key regulator of neuronal excitability in the CNS. Thalamic relay neurons of the dorsal lateral geniculate nucleus (dLGN) exhibit a tonic GABA(A) receptor (GABA(A)R)-mediated conductance that is correlated with delta-subunit expression. Indeed, consistent with the absence of delta-subunit expression, no tonic conductance is found in the adjacent ventral LGN. We show that, in contrast to the situation in cerebellar granule cells, thalamic delta-subunit-containing GABA(A)Rs (delta-GABA(A)Rs) do not contribute to a spillover component of IPSCs in dLGN. However, tonic activation of thalamic delta-GABA(A)Rs is sensitive to the global level of inhibition, showing an absolute requirement on the synaptic release of GABA. Thus, the tonic conductance is abolished when transmitter release probability is reduced or action potential-evoked release is blocked. We further show that continuous activation of delta-GABA(A)Rs introduces variability into the timing of low-threshold rebound bursts. Hence, activation of delta-GABA(A)Rs could act to destabilize thalamocortical oscillations and therefore have an important impact on behavioral state.


Assuntos
Neurônios/fisiologia , Receptores de GABA-A/fisiologia , Sinapses/fisiologia , Tálamo/fisiologia , Animais , Cloretos/metabolismo , Limiar Diferencial , Condutividade Elétrica , Corpos Geniculados/citologia , Corpos Geniculados/fisiologia , Homeostase/fisiologia , Técnicas In Vitro , Potenciais Pós-Sinápticos Inibidores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Inibição Neural/fisiologia , Isoformas de Proteínas/fisiologia , Tempo de Reação , Sinapses/metabolismo , Vesículas Sinápticas/metabolismo , Ácido gama-Aminobutírico/metabolismo
13.
J Neurosci ; 27(35): 9329-40, 2007 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-17728447

RESUMO

The ability of neurons, such as cerebellar granule neurons (CGNs), to fire action potentials (APs) at high frequencies during sustained depolarization is usually explained in relation to the functional properties of voltage-gated ion channels. Two-pore domain potassium (K(2P)) channels are considered to simply hyperpolarize the resting membrane potential (RMP) by increasing the potassium permeability of the membrane. However, we find that CGNs lacking the TASK-3 type K(2P) channel exhibit marked accommodation of action potential firing. The accommodation phenotype was not associated with any change in the functional properties of the underlying voltage-gated sodium channels, nor could it be explained by the more depolarized RMP that resulted from TASK-3 channel deletion. A functional rescue, involving the introduction of a nonlinear leak conductance with a dynamic current clamp, was able to restore wild-type firing properties to adult TASK-3 knock-out CGNs. Thus, in addition to the accepted role of TASK-3 channels in limiting neuronal excitability, by increasing the resting potassium conductance TASK-3 channels also increase excitability by supporting high-frequency firing once AP threshold is reached.


Assuntos
Potenciais de Ação/fisiologia , Cerebelo/citologia , Neurônios/fisiologia , Canais de Potássio/fisiologia , Potenciais de Ação/genética , Anestésicos Locais/farmacologia , Animais , Relação Dose-Resposta à Radiação , Estimulação Elétrica/métodos , Hibridização In Situ/métodos , Técnicas In Vitro , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/genética , Potenciais da Membrana/genética , Camundongos , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neurônios/efeitos da radiação , Técnicas de Patch-Clamp/métodos , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio/deficiência , Estrutura Terciária de Proteína/fisiologia , Tetraetilamônio/farmacologia , Tetrodotoxina/farmacologia
14.
J Physiol ; 586(21): 5091-9, 2008 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-18772202

RESUMO

We have discovered that adult thalamocortical relay neurones exhibit a sustained enhancement of synaptic inhibition triggered by transient action potential firing of a single thalamic relay neurone. The sustained activity-dependent increase in IPSC frequency (+48.3 +/- 11.4%, n = 32) was blocked by chelating calcium inside an individual cell, by scavenging nitric oxide or by blocking NMDA receptor activation in the thalamus. Surprisingly, the tonic inhibition that is known to result from extrasynaptic GABA(A) receptor activation in these cells was unaffected by this local form of plasticity. However, tonic inhibition was increased (+131.9 +/- 56.5%, n = 13) following widespread changes in GABA release across the thalamus. These data suggest that thalamocortical sleep-state oscillations requiring membrane hyperpolarization will be influenced by global sensing of GABA release acting through extrasynaptic GABA(A) receptors. In contrast, local changes in GABA release of the type observed following this novel form of activity-dependent plasticity will influence local integration of sensory information without changing levels of tonic inhibition.


Assuntos
Plasticidade Neuronal/fisiologia , Neurônios/efeitos dos fármacos , Sinapses/fisiologia , Tálamo/citologia , Ácido gama-Aminobutírico/metabolismo , Potenciais de Ação/fisiologia , Animais , Cálcio/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/metabolismo , Óxido Nítrico/metabolismo , Penicilamina/análogos & derivados , Penicilamina/farmacologia , Receptores de GABA-A/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais , Tálamo/fisiologia
15.
Cell Rep ; 24(4): 1071-1080, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-30044974

RESUMO

We have applied optogenetics and mGRASP, a light microscopy technique that labels synaptic contacts, to map the number and strength of defined corticocollicular (CC) connections. Using mGRASP, we show that CC projections form small, medium, and large synapses, and both the number and the distribution of synapse size vary among the IC regions. Using optogenetics, we show that low-frequency stimulation of CC axons expressing channelrhodopsin produces prolonged elevations of the CC miniature EPSC (mEPSC) rate. Functional analysis of CC mEPSCs reveals small-, medium-, and large-amplitude events that mirror the synaptic distributions observed with mGRASP. Our results reveal that descending ipsilateral projections dominate CC feedback via an increased number of large synaptic contacts, especially onto the soma of IC neurons. This study highlights the feasibility of combining microscopy (i.e., mGRASP) and optogenetics to reveal synaptic weighting of defined projections at the level of single neurons, enabling functional connectomic mapping in diverse neural circuits.


Assuntos
Mapeamento Encefálico/métodos , Neurônios/fisiologia , Optogenética/métodos , Animais , Camundongos
16.
Sci Rep ; 7: 46147, 2017 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-28406156

RESUMO

The relatively simple and compact morphology of cerebellar granule cells (CGCs) has led to the view that heterogeneity in CGC shape has negligible impact upon the integration of mossy fibre (MF) information. Following electrophysiological recording, 3D models were constructed from high-resolution imaging data to identify morphological features that could influence the coding of MF input patterns by adult CGCs. Quantification of MF and CGC morphology provided evidence that CGCs could be connected to the multiple rosettes that arise from a single MF input. Predictions from our computational models propose that MF inputs could be more densely encoded within the CGC layer than previous models suggest. Moreover, those MF signals arriving onto the dendrite closest to the axon will generate greater CGC excitation. However, the impact of this morphological variability on MF input selectivity will be attenuated by high levels of CGC inhibition providing further flexibility to the MF → CGC pathway. These features could be particularly important when considering the integration of multimodal MF sensory input by individual CGCs.


Assuntos
Cerebelo/citologia , Grânulos Citoplasmáticos/metabolismo , Potenciais Evocados/fisiologia , Animais , Axônios/metabolismo , Tamanho Celular , Dendritos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Fibras Musgosas Hipocampais/metabolismo , Sinapses/metabolismo , Fatores de Tempo
17.
Front Cell Neurosci ; 11: 95, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28420966

RESUMO

Cell-type specific differences in the kinetics of inhibitory postsynaptic conductance changes (IPSCs) are believed to impact upon network dynamics throughout the brain. Much attention has focused on how GABAA receptor (GABAAR) α and ß subunit diversity will influence IPSC kinetics, but less is known about the influence of the γ subunit. We have examined whether GABAAR γ subunit heterogeneity influences IPSC properties in the thalamus. The γ2 subunit gene was deleted from GABAARs selectively in the dorsal lateral geniculate nucleus (dLGN). The removal of the γ2 subunit from the dLGN reduced the overall spontaneous IPSC (sIPSC) frequency across all relay cells and produced an absence of IPSCs in a subset of relay neurons. The remaining slower IPSCs were both insensitive to diazepam and zinc indicating the absence of the γ2 subunit. Because these slower IPSCs were potentiated by methyl-6,7-dimethoxy-4-ethyl-ß-carboline-3-carboxylate (DMCM), we propose these IPSCs involve γ1 subunit-containing GABAAR activation. Therefore, γ subunit heterogeneity appears to influence the kinetics of GABAAR-mediated synaptic transmission in the visual thalamus in a cell-selective manner. We suggest that activation of γ1 subunit-containing GABAARs give rise to slower IPSCs in general, while faster IPSCs tend to be mediated by γ2 subunit-containing GABAARs.

18.
J Neurosci ; 25(49): 11455-67, 2005 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-16339039

RESUMO

Two-pore domain potassium (K2P) channel expression is believed to underlie the developmental emergence of a potassium leak conductance [IK(SO)] in cerebellar granule neurons (CGNs), suggesting that K2P function is an important determinant of the input conductance and resting membrane potential. To investigate the role that different K2P channels may play in the regulation of CGN excitability, we generated a mouse lacking TASK-1, a K2P channel known to have high expression levels in CGNs. In situ hybridization and real-time PCR studies in wild-type and TASK-1 knock-outs (KOs) demonstrated that the expression of other K2P channels was unaltered in CGNs. TASK-1 knock-out mice were healthy and bred normally but exhibited compromised motor performance consistent with altered cerebellar function. Whole-cell recordings from adult cerebellar slice preparations revealed that the resting excitability of mature CGNs was no different in TASK-1 KO and littermate controls. However, the modulation of IK(SO) by extracellular Zn2+, ruthenium red, and H+ was altered. The IK(SO) recorded from TASK-1 knock-out CGNs was no longer sensitive to alkalization and was blocked by Zn2+ and ruthenium red. These results suggest that a TASK-1-containing channel population has been replaced by a homodimeric TASK-3 population in the TASK-1 knock-out. These data directly demonstrate that TASK-1 channels contribute to the properties of IK(SO) in adult CGNs. However, TASK channel subunit composition does not alter the resting excitability of CGNs but does influence sensitivity to endogenous modulators such as Zn2+ and H+.


Assuntos
Cerebelo/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neurônios/fisiologia , Canais de Potássio de Domínios Poros em Tandem/fisiologia , Subunidades Proteicas/fisiologia , Animais , Células Cultivadas , Cerebelo/citologia , Humanos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Knockout , Transtornos das Habilidades Motoras/genética , Transtornos das Habilidades Motoras/fisiopatologia , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Canais de Potássio de Domínios Poros em Tandem/genética , Subunidades Proteicas/genética
20.
Nat Commun ; 7: 13579, 2016 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-27929058

RESUMO

The release of GABA from local interneurons in the dorsal lateral geniculate nucleus (dLGN-INs) provides inhibitory control during visual processing within the thalamus. It is commonly assumed that this important class of interneurons originates from within the thalamic complex, but we now show that during early postnatal development Sox14/Otx2-expressing precursor cells migrate from the dorsal midbrain to generate dLGN-INs. The unexpected extra-diencephalic origin of dLGN-INs sets them apart from GABAergic neurons of the reticular thalamic nucleus. Using optogenetics we show that at increased firing rates tectal-derived dLGN-INs generate a powerful form of tonic inhibition that regulates the gain of thalamic relay neurons through recruitment of extrasynaptic high-affinity GABAA receptors. Therefore, by revising the conventional view of thalamic interneuron ontogeny we demonstrate how a previously unappreciated mesencephalic population controls thalamic relay neuron excitability.


Assuntos
Interneurônios/fisiologia , Inibição Neural/fisiologia , Colículos Superiores/fisiologia , Tálamo/fisiologia , Vias Visuais/fisiologia , Animais , Biomarcadores/metabolismo , Linhagem da Célula , Movimento Celular , Corpos Geniculados/citologia , Masculino , Camundongos Endogâmicos C57BL , Fatores de Transcrição Otx/metabolismo , Fatores de Transcrição SOXB2/metabolismo , Células-Tronco/metabolismo , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA