Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34508001

RESUMO

Disinhibition is an obligatory initial step in the remodeling of cortical circuits by sensory experience. Our investigation on disinhibitory mechanisms in the classical model of ocular dominance plasticity uncovered an unexpected form of experience-dependent circuit plasticity. In the layer 2/3 of mouse visual cortex, monocular deprivation triggers a complete, "all-or-none," elimination of connections from pyramidal cells onto nearby parvalbumin-positive interneurons (Pyr→PV). This binary form of circuit plasticity is unique, as it is transient, local, and discrete. It lasts only 1 d, and it does not manifest as widespread changes in synaptic strength; rather, only about half of local connections are lost, and the remaining ones are not affected in strength. Mechanistically, the deprivation-induced loss of Pyr→PV is contingent on a reduction of the protein neuropentraxin2. Functionally, the loss of Pyr→PV is absolutely necessary for ocular dominance plasticity, a canonical model of deprivation-induced model of cortical remodeling. We surmise, therefore, that this all-or-none loss of local Pyr→PV circuitry gates experience-dependent cortical plasticity.


Assuntos
Dominância Ocular , Interneurônios/fisiologia , Inibição Neural , Plasticidade Neuronal , Parvalbuminas/metabolismo , Células Piramidais/fisiologia , Córtex Visual/fisiologia , Animais , Proteína C-Reativa/metabolismo , Interneurônios/citologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Células Piramidais/citologia , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
2.
Neuron ; 105(4): 621-629.e4, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-31831331

RESUMO

A balance between synaptic excitation and inhibition (E/I balance) maintained within a narrow window is widely regarded to be crucial for cortical processing. In line with this idea, the E/I balance is reportedly comparable across neighboring neurons, behavioral states, and developmental stages and altered in many neurological disorders. Motivated by these ideas, we examined whether synaptic inhibition changes over the 24-h day to compensate for the well-documented sleep-dependent changes in synaptic excitation. We found that, in pyramidal cells of visual and prefrontal cortices and hippocampal CA1, synaptic inhibition also changes over the 24-h light/dark cycle but, surprisingly, in the opposite direction of synaptic excitation. Inhibition is upregulated in the visual cortex during the light phase in a sleep-dependent manner. In the visual cortex, these changes in the E/I balance occurred in feedback, but not feedforward, circuits. These observations open new and interesting questions on the function and regulation of the E/I balance.


Assuntos
Ritmo Circadiano/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais Pós-Sinápticos Inibidores/fisiologia , Rede Nervosa/fisiologia , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Rede Nervosa/citologia , Inibição Neural/fisiologia , Técnicas de Cultura de Órgãos , Células Piramidais/fisiologia , Córtex Visual/citologia , Vias Visuais/citologia
3.
Neurobiol Aging ; 82: 120-127, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31476654

RESUMO

Aging often impairs cognitive functions associated with the medial temporal lobe (MTL). Anatomical studies identified the layer II pyramidal cells of the lateral entorhinal cortex (LEC) as one of the most vulnerable elements within the MTL. These cells provide a major excitatory input to the dentate gyrus hippocampal subfield through synapses onto granule cells and onto local inhibitory interneurons, and a fraction of these contacts are lost in aged individuals with impaired learning. Using optogenetics, we evaluated the functional status of the remaining inputs in an outbred rat model of aging that distinguishes between learning-impaired and learning-unimpaired individuals. We found that aging affects the presynaptic and postsynaptic strength of the LEC inputs onto granule cells. However, the magnitude of these changes was similar in impaired and unimpaired rats. In contrast, the recruitment of inhibition by LEC activation was selectively reduced in the aged impaired subjects. These findings are consistent with the notion that the preservation of an adequate balance of excitation and inhibition is crucial to maintaining proficient memory performance during aging.


Assuntos
Envelhecimento/fisiologia , Disfunção Cognitiva/fisiopatologia , Giro Denteado/fisiologia , Córtex Entorrinal/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais Pós-Sinápticos Inibidores/fisiologia , Animais , Giro Denteado/química , Córtex Entorrinal/química , Masculino , Técnicas de Cultura de Órgãos , Ratos , Ratos Long-Evans
4.
Sleep ; 41(10)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31796959

RESUMO

Rapid eye movement (REM) sleep is expressed at its highest levels during early life when the brain is rapidly developing. This suggests that REM sleep may play important roles in brain maturation and developmental plasticity. We investigated this possibility by examining the role of REM sleep in the regulation of plasticity-related proteins known to govern synaptic plasticity in vitro and in vivo. We combined immunohistochemistry with a classic model of experience-dependent plasticity in the developing brain known to be consolidated during sleep. We found that after the developing visual cortex is triggered to remodel, it is reactivated during REM sleep (as measured by FOS+ and ARC+ cells). This is accompanied by expression of several proteins implicated in synaptic long-term potentiation (PSD95 and phosphorylated (p), mTOR, cofilin, and CREB) across the different cortical layers. These changes did not occur in animals deprived of REM sleep, but were preserved in control animals that were instead awakened in non- (N) REM sleep. Collectively, these findings support a role for REM sleep in developmental brain plasticity.

5.
Nat Neurosci ; 21(6): 843-850, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29760525

RESUMO

Models of firing rate homeostasis such as synaptic scaling and the sliding synaptic plasticity modification threshold predict that decreasing neuronal activity (for example, by sensory deprivation) will enhance synaptic function. Manipulations of cortical activity during two forms of visual deprivation, dark exposure (DE) and binocular lid suture, revealed that, contrary to expectations, spontaneous firing in conjunction with loss of visual input is necessary to lower the threshold for Hebbian plasticity and increase miniature excitatory postsynaptic current (mEPSC) amplitude. Blocking activation of GluN2B receptors, which are upregulated by DE, also prevented the increase in mEPSC amplitude, suggesting that DE potentiates mEPSCs primarily through a Hebbian mechanism, not through synaptic scaling. Nevertheless, NMDA-receptor-independent changes in mEPSC amplitude consistent with synaptic scaling could be induced by extreme reductions of activity. Therefore, two distinct mechanisms operate within different ranges of neuronal activity to homeostatically regulate synaptic strength.


Assuntos
Homeostase/fisiologia , Aprendizagem/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Córtex Cerebral/fisiologia , Escuridão , Fenômenos Eletrofisiológicos/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Moduladores GABAérgicos/farmacologia , Potenciação de Longa Duração/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/fisiologia , Privação Sensorial
6.
Sci Adv ; 1(6): e1500105, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26601213

RESUMO

Rapid eye movement sleep is maximal during early life, but its function in the developing brain is unknown. We investigated the role of rapid eye movement sleep in a canonical model of developmental plasticity in vivo (ocular dominance plasticity in the cat) induced by monocular deprivation. Preventing rapid eye movement sleep after monocular deprivation reduced ocular dominance plasticity and inhibited activation of a kinase critical for this plasticity (extracellular signal-regulated kinase). Chronic single-neuron recording in freely behaving cats further revealed that cortical activity during rapid eye movement sleep resembled activity present during monocular deprivation. This corresponded to times of maximal extracellular signal-regulated kinase activation. These findings indicate that rapid eye movement sleep promotes molecular and network adaptations that consolidate waking experience in the developing brain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA