Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev E ; 109(2-1): 024207, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38491646

RESUMO

We study the localized states of an extra electron in an anisotropic quasi-two-dimensional system in which the electron-lattice interaction and the anharmonicity of the lattice vibrations are dominant in one direction. This model describes layers of polydiacetylene or other polymer chains, beta sheets of polypeptides, multilevel microstructures of conjugated polymers, and other low-dimensional systems. It is shown that for appropriate parameter values of the system an extra electron can excite a soliton-like mobile wave of the lattice deformation, within which it can get self-trapped. Such a bound state of an electron and the lattice deformation form a nonlinear two-component polaron-like entity, which can propagate with minimum of the energy dissipation. Our findings are based on the variational approach and the full numerical solution of the coupled system of nonlinear equations. These results suggest that the experimentally measured charge and energy transport over macroscopic distances in the above-mentioned systems can be provided by the soliton mechanism and thus have a potential impact on the theoretical background of the numerous applications of low-dimensional materials in nanoelectronics.

2.
Indian J Exp Biol ; 2008 May; 46(5): 353-7
Artigo em Inglês | IMSEAR | ID: sea-62111

RESUMO

The nonlinear mechanism for the origin of the weak biophoton emission from biological systems is suggested. The mechanism is based on the properties of solitons that provide energy transfer and charge transport in metabolic processes. Such soliton states are formed in alpha-helical proteins. Account of the electron-phonon interaction in macromolecules results in the self-trapping of electrons in a localized soliton-like state, known as Davydov's solitons. The important role of the helical symmetry of macromolecules is elucidated for the formation, stability and dynamical properties of solitons. It is shown that the soliton with the lowest energy has an inner structure with the many-hump envelope. The total probability of the excitation in the helix is characterized by interspine oscillations with the frequency of oscillations, proportional to the soliton velocity. The radiative life-time of a soliton is calculated and shown to exceed the life-time of an excitation on an isolated peptide group by several orders of magnitude.


Assuntos
Biofísica/métodos , Elétrons , Modelos Químicos , Modelos Estatísticos , Oscilometria , Peptídeos/química , Fótons , Probabilidade , Estrutura Secundária de Proteína , Proteínas/química , Radiação , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA