Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(9): 107629, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39098524

RESUMO

Organic cations comprise a significant part of medically relevant drugs and endogenous substances. Such substances need organic cation transporters for efficient transfer via cell membranes. However, the membrane transporters of most natural or synthetic organic cations are still unknown. To identify these transporters, genes of 10 known OCTs and 18 orphan solute carriers (SLC) were overexpressed in HEK293 cells and characterized concerning their transport activities with a broad spectrum of low molecular weight substances emphasizing organic cations. Several SLC35 transporters and SLC38A10 significantly enhanced the transport of numerous relatively hydrophobic organic cations. Significant organic cation transport activities have been found in gene families classified as transporters of other substance classes. For instance, SLC35G3 and SLC38A10 significantly accelerated the uptake of several cations, such as clonidine, 3,4-methylenedioxymethamphetamine, and nicotine, which are known as substrates of a thus far genetically unidentified proton/organic cation antiporter. The transporters SLC35G4 and SLC35F5 stood out by their significantly increased choline uptake, and several other SLC transported choline together with a broader spectrum of organic cations. Overall, there are many more polyspecific organic cation transporters than previously estimated. Several transporters had one predominant substrate but accepted some other cationic substrates, and others showed no particular preference for one substrate but transported several organic cations. The role of these transporters in biology and drug therapy remains to be elucidated.


Assuntos
Proteínas de Transporte de Cátions Orgânicos , Humanos , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Proteínas de Transporte de Cátions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/química , Células HEK293 , Especificidade por Substrato , Cátions/metabolismo , Transporte Biológico
2.
J Biol Chem ; : 107835, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39342994

RESUMO

Organic cation transporters (OCTs) can transport structurally highly diverse substrates. The molecular basis of this extensive polyspecificity has been further elucidated by cryogenic electron microscopy. Apparently, in addition to negatively charged amino acids, aromatic residues may contribute to substrate binding and substrate selectivity. In this study, we provide a comprehensive characterization of phenylalanine 244 in OCT1 function. We analyzed the uptake of 144 OCT1 substrates for the phenylalanine 244 to alanine substitution compared to wild-type OCT1. This substitution had highly substrate-specific effects ranging from transport reduced to 10% of wild-type activity up to 8-fold increased transport rates. Four percent of substrates showed strongly increased uptake (> 200% of wild type) whereas 39% showed strongly reduced transport (< 50% of wild type). Particularly with larger, more hydrophobic, and more aromatic substrates, the Phe244Ala substitution resulted in higher transport rates and lower inhibition of the transporter. In contrast, substrates with a lower molecular weight and less aromatic rings showed generally decreased uptake rates. A comparison of our data to available transport kinetic data demonstrates that generally, high-affinity low-capacity substrates show increased uptake by the Phe244Ala substitution whereas low-affinity high-capacity substrates are characterized by reduced transport rates. Altogether, our study provides the first comprehensive characterization of the functional role of an aromatic amino acid within the substrate translocation pathway of OCT1. The pleiotropic function further highlights that Phenylalanine 244 interacts in a highly specific manner with OCT1 substrates and inhibitors.

3.
J Biol Chem ; 298(6): 101974, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35469921

RESUMO

Organic cation transporter 1 (OCT1) is a membrane transporter that affects hepatic uptake of cationic and weakly basic drugs. OCT1 transports structurally highly diverse substrates. The mechanisms conferring this polyspecificity are unknown. Here, we analyzed differences in transport kinetics between human and mouse OCT1 orthologs to identify amino acids that contribute to the polyspecificity of OCT1. Following stable transfection of HEK293 cells, we observed more than twofold differences in the transport kinetics of 22 out of 28 tested substrates. We found that the ß2-adrenergic drug fenoterol was transported with eightfold higher affinity but at ninefold lower capacity by human OCT1. In contrast, the anticholinergic drug trospium was transported with 11-fold higher affinity but at ninefold lower capacity by mouse Oct1. Using human-mouse chimeric constructs and site-directed mutagenesis, we identified nonconserved amino acids Cys36 and Phe32 as responsible for the species-specific differences in fenoterol and trospium uptake. Substitution of Cys36 (human) to Tyr36 (mouse) caused a reversal of the affinity and capacity of fenoterol but not trospium uptake. Substitution of Phe32 to Leu32 caused reversal of trospium but not fenoterol uptake kinetics. Comparison of the uptake of structurally similar ß2-adrenergics and molecular docking analyses indicated the second phenol ring, 3.3 to 4.8 Å from the protonated amino group, as essential for the affinity for fenoterol conferred by Cys36. This is the first study to report single amino acids as determinants of OCT1 polyspecificity. Our findings suggest that structure-function data of OCT1 is not directly transferrable between substrates or species.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Catecolaminas/química , Transportador 1 de Cátions Orgânicos , Sequência de Aminoácidos , Animais , Proteínas da Membrana Plasmática de Transporte de Catecolaminas/metabolismo , Fenoterol , Células HEK293 , Humanos , Camundongos , Simulação de Acoplamento Molecular , Transportador 1 de Cátions Orgânicos/química , Transportador 1 de Cátions Orgânicos/metabolismo
4.
Mol Pharm ; 20(12): 6289-6300, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37962560

RESUMO

Many drugs have chiral centers and are therapeutically applied as racemates. Thus, the stereoselectivity in their interactions with membrane transporters needs to be addressed. Here, we studied stereoselectivity in inhibiting organic cation transporters (OCTs) 1, 2, and 3 and the high-affinity monoamine transporters (MATs) NET and SERT. Selectivity by the inhibition of 35 pairs of enantiomers significantly varied among the three closely related OCTs. OCT1 inhibition was nonselective in almost all cases, whereas OCT2 was stereoselectively inhibited by 45% of the analyzed drugs. However, the stereoselectivity of the OCT2 was only moderate with the highest selectivity observed for pramipexole. The (R)-enantiomer inhibited OCT2 4-fold more than the (S)-enantiomer. OCT3 showed the greatest stereoselectivity in its inhibition. (R)-Tolterodine and (S)-zolmitriptan inhibited OCT3 11-fold and 25-fold more than their respective counterparts. Interestingly, in most cases, the pharmacodynamically active enantiomer was also the stronger OCT inhibitor. In addition, stereoselectivity in the OCT inhibition appeared not to depend on the transported substrate. For high-affinity MATs, our data confirmed the stereoselective inhibition of NET and SERT by several antidepressants. However, the stereoselectivity measured here was generally lower than that reported in the literature. Unexpectedly, the high-affinity MATs were not significantly more stereoselectively inhibited than the polyspecific OCTs. Combining our in vitro OCT inhibition data with available stereoselective pharmacokinetic analyses revealed different risks of drug-drug interactions, especially at OCT2. For the tricyclic antidepressant doxepine, only the (E)-isomer showed an increased risk of drug-drug interactions according to guidelines from regulatory authorities for renal transporters. However, most chiral drugs show only minor stereoselectivity in the inhibition of OCTs in vitro, which is unlikely to translate into clinical consequences.


Assuntos
Proteínas de Membrana Transportadoras , Transportador 1 de Cátions Orgânicos , Transportador 1 de Cátions Orgânicos/metabolismo , Transporte Biológico , Interações Medicamentosas , Cátions , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Transportador 2 de Cátion Orgânico/metabolismo
5.
Int J Mol Sci ; 23(4)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35216120

RESUMO

The organic cation transporter 1 (OCT1, SLC22A1) transports a large number of structurally diverse endogenous and exogenous substrates. There are numerous known competitive and non-competitive inhibitors of OCT1, but there are no studies systematically analyzing the relationship between transport, stimulation, and inhibition. Here, we tested in vitro OCT1 inhibition by OCT1 substrates and transport of OCT1 inhibitors under uniform analytical conditions. Beyond inhibition testing with two model substrates, we tested nine additional OCT1 substrates for their mutual inhibition. Inhibition of ASP+ uptake by most OCT1 substrates was weak. The model substrate sumatriptan, with its moderately stronger inhibitability, was used to confirm this. Interestingly, OCT1 substrates exhibiting stronger OCT1 inhibition were mainly biaromatic ß-agonistic drugs, such as dobutamine, fenoterol, ractopamine and ritodrine. Biaromatic organic cations were both, strong inhibitors and good substrates, but many OCT1 substrates showed little pairwise inhibition. Surprisingly, sumatriptan did significantly enhance dobutamine uptake. This effect was concentration dependent and additional experiments indicated that efflux inhibition may be one of the underlying mechanisms. Our data suggests, that OCT1 substrates are mainly weak OCT1 inhibitors and among those inhibiting well, noncompetitive inhibition could be responsible. Weak competitive inhibition confirms that OCT1 inhibition screenings poorly predict OCT1 substrates. Additionally, we showed that the OCT1 substrate sumatriptan can enhance uptake of some other OCT1 substrates. OCT1 transport stimulation was already observed earlier but is still poorly understood. Low OCT1 uptake inhibition and strong OCT1 efflux inhibition could be mechanisms exploitable for enhancing transport.


Assuntos
Transporte Biológico/fisiologia , Fator 1 de Transcrição de Octâmero/metabolismo , Linhagem Celular , Células HEK293 , Humanos
6.
Int J Mol Sci ; 23(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35955563

RESUMO

Many organic cations (OCs) may be transported through membranes by a genetically still uncharacterized proton-organic cation (H + OC) antiporter. Here, we characterized an extended substrate spectrum of this antiporter. We studied the uptake of 72 drugs in hCMEC/D3 cells as a model of the human blood-brain barrier. All 72 drugs were tested with exchange transport assays and the transport of 26 of the drugs was studied in more detail concerning concentration-dependent uptake and susceptibility to specific inhibitors. According to exchange transport assays, 37 (51%) drugs were good substrates of the H + OC antiporter. From 26 drugs characterized in more detail, 23 were consistently identified as substrates of the H + OC antiporter in six different assays and transport kinetic constants could be identified with intrinsic clearances between 0.2 (ephedrine) and 201 (imipramine) mL × minute-1 × g protein-1. Excellent substrates of the H + OC antiporter were no substrates of organic cation transporter OCT1 and vice versa. Good substrates of the H + OC antiporter were more hydrophobic and had a lower topological polar surface area than non-substrates or OCT1 substrates. These data and further research on the H + OC antiporter may result in a better understanding of pharmacokinetics, drug-drug interactions and variations in pharmacokinetics.


Assuntos
Antiporters , Fator 1 de Transcrição de Octâmero/metabolismo , Transportador 1 de Cátions Orgânicos , Antiporters/genética , Antiporters/metabolismo , Transporte Biológico , Encéfalo/metabolismo , Cátions , Humanos , Proteínas de Transporte de Cátions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Transportador 1 de Cátions Orgânicos/metabolismo , Prótons
7.
Int J Mol Sci ; 22(23)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34884618

RESUMO

Human monoamine transporters (MATs) are cation transporters critically involved in neuronal signal transmission. While inhibitors of MATs have been intensively studied, their substrate spectra have received far less attention. Polyspecific organic cation transporters (OCTs), predominantly known for their role in hepatic and renal drug elimination, are also expressed in the central nervous system and might modulate monoaminergic signaling. Using HEK293 cells overexpressing MATs or OCTs, we compared uptake of 48 compounds, mainly phenethylamine and tryptamine derivatives including matched molecular pairs, across noradrenaline, dopamine and serotonin transporters and OCTs (1, 2, and 3). Generally, MATs showed surprisingly high transport activities for numerous analogs of neurotransmitters, but their substrate spectra were limited by molar mass. Human OCT2 showed the broadest substrate spectrum, and also the highest overlap with MATs substrates. Comparative kinetic analyses revealed that the radiotracer meta-iodobenzylguanidine had the most balanced uptake across all six transporters. Matched molecular pair analyses comparing MAT and OCT uptake using the same methodology could provide a better understanding of structural determinants for high cell uptake by MATs or OCTs. The data may result in a better understanding of pharmacokinetics and toxicokinetics of small molecular organic cations and, possibly, in the development of more specific radiotracers for MATs.


Assuntos
Neurotransmissores/metabolismo , Fator 1 de Transcrição de Octâmero/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Transportador 2 de Cátion Orgânico/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/metabolismo , Transporte Biológico , Células HEK293 , Humanos , Especificidade por Substrato
8.
Drug Metab Dispos ; 48(12): 1380-1392, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33037045

RESUMO

The most commonly used oral antidiabetic drug, metformin, is a substrate of the hepatic uptake transporter OCT1 (gene name SLC22A1). However, OCT1 deficiency leads to more pronounced reductions of metformin concentrations in mouse than in human liver. Similarly, the effects of OCT1 deficiency on the pharmacokinetics of thiamine were reported to differ between human and mouse. Here, we compared the uptake characteristics of metformin and thiamine between human and mouse OCT1 using stably transfected human embryonic kidney 293 cells. The affinity for metformin was 4.9-fold lower in human than in mouse OCT1, resulting in a 6.5-fold lower intrinsic clearance. Therefore, the estimated liver-to-blood partition coefficient is only 3.34 in human compared with 14.4 in mouse and may contribute to higher intrahepatic concentrations in mice. Similarly, the affinity for thiamine was 9.5-fold lower in human than in mouse OCT1. Using human-mouse chimeric OCT1, we showed that simultaneous substitution of transmembrane helices TMH2 and TMH3 resulted in the reversal of affinity for metformin. Using homology modeling, we suggest several explanations, of which a different interaction of Leu155 (human TMH2) compared with Val156 (mouse TMH2) with residues in TMH3 had the strongest experimental support. In conclusion, the contribution of human OCT1 to the cellular uptake of thiamine and especially of metformin may be much lower than that of mouse OCT1. This may lead to an overestimation of the effects of OCT1 on hepatic concentrations in humans when using mouse as a model. In addition, comparative analyses of human and mouse orthologs may help reveal mechanisms of OCT1 transport. SIGNIFICANCE STATEMENT: OCT1 is a major hepatic uptake transporter of metformin and thiamine, but this study reports strong differences in the affinity for both compounds between human and mouse OCT1. Consequently, intrahepatic metformin concentrations could be much higher in mice than in humans, impacting metformin actions and representing a strong limitation of using rodent animal models for predictions of OCT1-related pharmacokinetics and efficacy in humans. Furthermore, OCT1 transmembrane helices TMH2 and TMH3 were identified to confer the observed species-specific differences in metformin affinity.


Assuntos
Metformina/farmacocinética , Transportador 1 de Cátions Orgânicos/metabolismo , Tiamina/farmacocinética , Animais , Avaliação Pré-Clínica de Medicamentos/métodos , Células HEK293 , Hepatócitos , Humanos , Fígado/enzimologia , Masculino , Camundongos , Transportador 1 de Cátions Orgânicos/genética , Transportador 1 de Cátions Orgânicos/ultraestrutura , Conformação Proteica em alfa-Hélice/genética , Ratos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/ultraestrutura , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Relação Estrutura-Atividade
9.
Eur J Clin Pharmacol ; 76(2): 285-290, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31732756

RESUMO

BACKGROUND: Many patients receive Z-drugs for hospital-associated sleep problems, in spite of well-known risks. The aim of this study was to learn more about the attractiveness of Z-drugs, seen from the doctors' and nurses' perspective. METHODS: Using a standardized questionnaire, doctors (63/116) and nurses (73/243) in a German general hospital were surveyed about the risks and benefits of Z-drugs, compared with benzodiazepines. RESULT: "Reduced time to get to sleep" was perceived by doctors (51%) and nurses (53%) to be a strong benefit of Z-drugs; "confusion" and "falls" were perceived by ca. 10% of doctors and ca. 15% of nurses to be a frequent problem. Compared with benzodiazepines, respondents more often answered "unable to judge" for Z-drugs; e.g. for doctors, 18% (benzodiazepines) vs. 45% (Z-drugs) were unable to judge "improved daytime functioning" and 12% (benzodiazepines) vs. 37% (Z-drugs) were unable to judge "falls." CONCLUSION: Z-drugs seem to be attractive because experiential knowledge overemphasizes their benefits and fails to take risks such as drug-related falls and confusion into account. Difficulties to judge a drug's risk-benefit ratio do not prevent doctors and nurses from using them. Interventions for reducing Z-drug usage should incorporate local quality assurance data about relevant patient risks.


Assuntos
Benzodiazepinas/administração & dosagem , Hipnóticos e Sedativos/administração & dosagem , Enfermeiras e Enfermeiros/estatística & dados numéricos , Médicos/estatística & dados numéricos , Atitude do Pessoal de Saúde , Benzodiazepinas/efeitos adversos , Estudos Transversais , Feminino , Alemanha , Hospitais , Humanos , Hipnóticos e Sedativos/efeitos adversos , Masculino , Transtornos do Sono-Vigília/tratamento farmacológico , Inquéritos e Questionários
10.
J Neural Transm (Vienna) ; 126(1): 35-45, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30610379

RESUMO

Selective serotonin reuptake inhibitors (SSRIs) are first-line antidepressants for the treatment of major depressive disorder (MDD). However, treatment response during an initial therapeutic trial is often poor and is difficult to predict. Heterogeneity of response to SSRIs in depressed patients is partly driven by co-occurring somatic disorders such as coronary artery disease (CAD) and obesity. CAD and obesity may also be associated with metabolic side effects of SSRIs. In this study, we assessed the association of CAD and obesity with treatment response to SSRIs in patients with MDD using a polygenic score (PGS) approach. Additionally, we performed cross-trait meta-analyses to pinpoint genetic variants underpinnings the relationship of CAD and obesity with SSRIs treatment response. First, PGSs were calculated at different p value thresholds (PT) for obesity and CAD. Next, binary logistic regression was applied to evaluate the association of the PGSs to SSRIs treatment response in a discovery sample (ISPC, N = 865), and in a replication cohort (STAR*D, N = 1,878). Finally, a cross-trait GWAS meta-analysis was performed by combining summary statistics. We show that the PGSs for CAD and obesity were inversely associated with SSRIs treatment response. At the most significant thresholds, the PGS for CAD and body mass index accounted 1.3%, and 0.8% of the observed variability in treatment response to SSRIs, respectively. In the cross-trait meta-analyses, we identified (1) 14 genetic loci (including NEGR1, CADM2, PMAIP1, PARK2) that are associated with both obesity and SSRIs treatment response; (2) five genetic loci (LINC01412, PHACTR1, CDKN2B, ATXN2, KCNE2) with effects on CAD and SSRIs treatment response. Our findings implicate that the genetic variants of CAD and obesity are linked to SSRIs treatment response in MDD. A better SSRIs treatment response might be achieved through a stratified allocation of treatment for MDD patients with a genetic risk for obesity or CAD.


Assuntos
Doença da Artéria Coronariana/genética , Transtorno Depressivo Maior/tratamento farmacológico , Obesidade/genética , Avaliação de Resultados em Cuidados de Saúde , Variantes Farmacogenômicos , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Adolescente , Adulto , Idoso , Índice de Massa Corporal , Comorbidade , Doença da Artéria Coronariana/epidemiologia , Transtorno Depressivo Maior/epidemiologia , Feminino , Loci Gênicos , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/epidemiologia , Adulto Jovem
11.
PLoS Med ; 14(4): e1002286, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28441386

RESUMO

BACKGROUND: Graft-derived cell-free DNA (GcfDNA), which is released into the blood stream by necrotic and apoptotic cells, is a promising noninvasive organ integrity biomarker. In liver transplantation (LTx), neither conventional liver function tests (LTFs) nor immunosuppressive drug monitoring are very effective for rejection monitoring. We therefore hypothesized that the quantitative measurement of donor-derived cell-free DNA (cfDNA) would have independent value for the assessment of graft integrity, including damage from acute rejection. METHODS AND FINDINGS: Traditional LFTs were performed and plasma GcfDNA was monitored in 115 adults post-LTx at three German transplant centers as part of a prospective, observational, multicenter cohort trial. GcfDNA percentage (graft cfDNA/total cfDNA) was measured using droplet digital PCR (ddPCR), based on a limited number of predefined single nucleotide polymorphisms, enabling same-day turn-around. The same method was used to quantify blood microchimerism. GcfDNA was increased >50% on day 1 post-LTx, presumably from ischemia/reperfusion damage, but rapidly declined in patients without graft injury within 7 to 10 d to a median <10%, where it remained for the 1-y observation period. Of 115 patients, 107 provided samples that met preestablished criteria. In 31 samples taken from 17 patients during biopsy-proven acute rejection episodes, the percentage of GcfDNA was elevated substantially (median 29.6%, 95% CI 23.6%-41.0%) compared with that in 282 samples from 88 patients during stable periods (median 3.3%, 95% CI 2.9%-3.7%; p < 0.001). Only slightly higher values (median 5.9%, 95% CI 4.4%-10.3%) were found in 68 samples from 17 hepatitis C virus (HCV)-positive, rejection-free patients. LFTs had low overall correlations (r = 0.28-0.62) with GcfDNA and showed greater overlap between patient subgroups, especially between acute rejection and HCV+ patients. Multivariable logistic regression modeling demonstrated that GcfDNA provided additional LFT-independent information on graft integrity. Diagnostic sensitivity and specificity were 90.3% (95% CI 74.2%-98.0%) and 92.9% (95% CI 89.3%-95.6%), respectively, for GcfDNA at a threshold value of 10%. The area under the receiver operator characteristic curve was higher for GcfDNA (97.1%, 95% CI 93.4%-100%) than for same-day conventional LFTs (AST: 95.7%; ALT: 95.2%; γ-GT: 94.5%; bilirubin: 82.6%). An evaluation of microchimerism revealed that the maximum donor DNA in circulating white blood cells was only 0.068%. GcfDNA percentage can be influenced by major changes in host cfDNA (e.g., due to leukopenia or leukocytosis). One limitation of our study is that exact time-matched GcfDNA and LFT samples were not available for all patient visits. CONCLUSIONS: In this study, determination of GcfDNA in plasma by ddPCR allowed for earlier and more sensitive discrimination of acute rejection in LTx patients as compared with conventional LFTs. Potential blood microchimerism was quantitatively low and had no significant influence on GcfDNA value. Further research, which should ideally include protocol biopsies, will be needed to establish the practical value of GcfDNA measurements in the management of LTx patients.


Assuntos
DNA/sangue , Rejeição de Enxerto/sangue , Transplante de Fígado , Adulto , Idoso , Área Sob a Curva , Biomarcadores/sangue , Quimerismo , Feminino , Alemanha , Rejeição de Enxerto/diagnóstico , Hepacivirus , Humanos , Leucócitos/metabolismo , Testes de Função Hepática , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Curva ROC
12.
Biol Chem ; 398(2): 237-249, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27676604

RESUMO

Tropane alkaloids and their derivatives are anticholinergic drugs with narrow therapeutic range. Here we characterize the organic cation transporters from the SLC22 (OCT1, OCT2, and OCT3) and the SLC47 families (MATE1 and MATE2-K) as potential mediators of the renal and extra-renal excretion, the two major roads of elimination of these substances. All analyzed compounds inhibited and the quaternary amine derivatives ipratropium and trospium were strongly transported by OCTs and MATEs. Overexpression of OCTs or MATEs in HEK293 cells resulted in an up to 63-fold increase in the uptake of ipratropium (Km of 0.32 µm to OCT2 and Vmax of 3.34 nmol×mg protein-1×min-1 to MATE1). The transcellular transport of ipratropium was 16-fold higher in OCT2-MATE1 and 10-fold higher in OCT1-MATE1 overexpressing compared to control MDCKII cells. Genetic polymorphisms in OCT1 and OCT2 affected ipratropium uptake and clinically relevant concentration of ondansetron and pyrithiamine inhibited ipratropium uptake via MATEs by more than 90%. This study suggests that OCT1, OCT2 and MATEs may be strongly involved in the renal and extra-renal elimination of ipratropium and other quaternary amine alkaloids. These substances have a notoriously narrow therapeutic range and the drug-drug interactions suggested here should be further critically evaluated in humans.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Catecolaminas/antagonistas & inibidores , Proteínas da Membrana Plasmática de Transporte de Catecolaminas/metabolismo , Proteínas de Transporte de Cátions Orgânicos/antagonistas & inibidores , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Tropanos/metabolismo , Tropanos/farmacologia , Animais , Transporte Biológico/efeitos dos fármacos , Proteínas da Membrana Plasmática de Transporte de Catecolaminas/genética , Permeabilidade da Membrana Celular/efeitos dos fármacos , Cães , Interações Medicamentosas , Células HEK293 , Humanos , Ipratrópio/metabolismo , Células Madin Darby de Rim Canino , Proteínas de Transporte de Cátions Orgânicos/genética , Polimorfismo de Nucleotídeo Único , Tropanos/química
13.
Biochem Pharmacol ; 223: 116188, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580166

RESUMO

Recently published cryo-EM structures of human organic cation transporters of the SLC22 family revealed seven, sequentially arranged glutamic and aspartic acid residues, which may be relevant for interactions with positively charged substrates. We analyzed the functional consequences of removing those negative charges by creating D155N, E232Q, D382N, E390Q, E451Q, E459Q, and D478N mutants of OCT3. E232Q, E459Q, and D478N resulted in a lack of localization in the outer cell membrane and no relevant uptake activity. However, D155N and E451Q showed a substrate-specific loss of transport activity, whereas E390Q had no remaining activity despite correct membrane localization. In contrast, D382N showed almost wild-type-like uptake. D155 is located at the entrance to the substrate binding pocket and could, therefore be involved in guiding cationic substrates towards the inside of the binding pocket. For E390, we confirm its critical function for transporter function as it was recently shown for the corresponding position in OCT1. Interestingly, E451 seems to be located at the bottom of the binding pocket in the outward-open confirmation of the transporter. Substrate-specific loss of transport activity of the E451Q variant suggests an essential role in the transport cycle of specific substances as part of an opportunistic binding site. In general, our study highlights the impact of the cryo-EM structures in guiding mutagenesis studies to understand the molecular level of transporter-ligand interactions, and it also confirms the importance of testing multiple substrates in mutagenesis studies of polyspecific OCTs.


Assuntos
Aminoácidos , Proteínas de Transporte de Cátions Orgânicos , Humanos , Cátions/metabolismo , Mutagênese , Proteínas de Transporte de Cátions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Transportador 1 de Cátions Orgânicos/metabolismo , Transportador 2 de Cátion Orgânico
14.
Artigo em Inglês | MEDLINE | ID: mdl-39429132

RESUMO

Most central nervous system (CNS) active drugs are organic cations, which need carrier proteins for efficient transfer through the blood-brain barrier (BBB). A genetically still unidentified proton organic cation (H+/OC) antiporter is found in several tissues, including endothelial cells of the BBB. We characterized the substrate spectrum of the H+/OC antiporter and the overlap in substrate spectrum with OCTN1, OCTN2 or OCT3 by screening 87 potential substrates for transport activity. Based on high antiport rates, 45 of the tested substances were substrates of the H+/OC antiporter. They included antidepressants (like tranylcypromine or nortriptyline), antipsychotics (like levomepromazine) and local anaesthetics. Concentration-dependent transport was confirmed for 38 of the substrates. Transport uptake depending on a pH gradient across the cell membrane confirmed that 43 drugs were indeed substrates of the H+/OC antiporter. However, the patterns of pH dependence differed between the substrates, possibly indicating different modes of transport or the existence of multiple antiporter proteins. The substrate overlap between the H+/OC antiporter and OCTN1, OCTN2 or OCT3 was minimal, indicating that the latter three are not the proteins underlying the H+/OC antiporter activity. Overall, about 50% of positively charged drugs may be substrates of the antiporter, which may be the most important membrane transport protein for many drugs.

15.
Neuroimage ; 69: 244-55, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23266699

RESUMO

Halogenated volatile anesthetics (HVA) are widely used in medicine and research but their effects on brain metabolism in intact organisms are still largely unknown. Here, localized proton magnetic resonance spectroscopy (MRS) of anesthetized mice was applied to evaluate HVA effects on cerebral metabolites in vivo. Experimental protocols combined different concentrations of isoflurane, halothane, sevoflurane, and desflurane with known modulators of adrenergic, GABAergic, and glutamatergic neurotransmission. As a most striking finding, brain lactate increased in individual mice from 1.0 ± 0.6 mM (awake state) to 6.2 ± 1.5 mM (1.75% isoflurane). In addition, relative to total creatine, there were significant isoflurane-induced increases of alanine by 111%, GABA by 20%, choline-containing compounds by 20%, and myo-inositol by 10% which were accompanied by significant decreases of glucose by 51% and phosphocreatine by 9%. The elevation of lactate was most pronounced in the striatum. The HVA effects correlated with the respective minimal alveolar concentrations and were mostly reversible within minutes. The observed alterations are best explained by an HVA-induced stimulation of adrenergic pathways in conjunction with an inhibition of the respiratory chain. Apart from casting new light on cerebral energy metabolism, the present results challenge brain studies of HVA-anesthetized animals.


Assuntos
Anestésicos Inalatórios/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Animais , Feminino , Hidrocarbonetos Halogenados/farmacologia , Espectroscopia de Ressonância Magnética , Camundongos , Prótons
16.
J Pharmacol Exp Ther ; 347(1): 181-92, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23922447

RESUMO

The organic cation transporter 1 (OCT1), also known as solute carrier family 22 member 1, is strongly and specifically expressed in the human liver. Here we show that the hepatocyte nuclear factor 1 (HNF1) regulates OCT1 transcription and contributes to the strong, liver-specific expression of OCT1. Bioinformatic analyses revealed strong conservation of HNF1 binding motifs in an evolutionary conserved region (ECR) in intron 1 of the OCT1 gene. Electrophoretic mobility shift and chromatin immunoprecipitation assays confirmed the specific binding of HNF1 to the intron 1 ECR. In reporter gene assays performed in HepG2 cells, the intron 1 ECR increased SV40 promoter activity by 22-fold and OCT1 promoter activity by 13-fold. The increase was reversed when the HNF1 binding sites in the intron 1 ECR were mutated or the endogenous HNF1α expression was downregulated with small interfering RNA. Following HNF1α overexpression in Huh7 cells, the intron 1 ECR increased SV40 promoter activity by 11-fold and OCT1 promoter activity by 6-fold. Without HNF1α overexpression, the increases were only 3- and 2-fold, respectively. Finally, in human liver samples, high HNF1 expression was significantly correlated with high OCT1 expression (r = 0.48, P = 0.002, n = 40). In conclusion, HNF1 is a strong regulator of OCT1 expression. It remains to be determined whether genetic variants, disease conditions, or drugs that affect HNF1 activity may affect the pharmacokinetics and efficacy of OCT1-transported drugs such as morphine, tropisetron, ondansetron, tramadol, and metformin. Beyond OCT1, this study demonstrates the validity and usefulness of interspecies comparisons in the discovery of functionally relevant genomic sequences.


Assuntos
Sequência Conservada/genética , Evolução Molecular , Fator 1 Nuclear de Hepatócito/genética , Íntrons/genética , Transportador 1 de Cátions Orgânicos/biossíntese , Transportador 1 de Cátions Orgânicos/genética , Adolescente , Adulto , Idoso , Animais , Bovinos , Criança , Pré-Escolar , Cães , Feminino , Regulação da Expressão Gênica , Células Hep G2 , Hepatócitos/fisiologia , Humanos , Macaca mulatta , Masculino , Camundongos , Pessoa de Meia-Idade , Pan troglodytes , Ligação Proteica/genética , Ratos , Especificidade da Espécie , Transcrição Gênica , Adulto Jovem
17.
Ther Drug Monit ; 35(6): 859-62, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24089072

RESUMO

BACKGROUND: A selective and sensitive high-performance liquid chromatographic method with fluorescence detection after postcolumn reduction is described for the routine measurement of vitamin K1 in plasma samples of 100 µL of volume. METHODS: Liquid-liquid extraction was used for the sample preparation with vitamin K2 as an internal standard. For the chromatographic separation, a standard C18 column was applied. The calibration range used was from 2 to 500 ng/mL. RESULTS: At the low level (5 ng/mL), a coefficient of variation of 14.9% was observed interday in the quality control samples, whereas at the intermediate (50 ng/mL) and high (200 ng/mL) levels such of 6.8% and 8.7% were found. CONCLUSIONS: The method has proven robust and convenient for the analysis of samples from clinical pharmacological studies.


Assuntos
Antifibrinolíticos/sangue , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Fluorescência/métodos , Vitamina K 1/sangue , Animais , Calibragem , Bovinos , Humanos , Controle de Qualidade , Sensibilidade e Especificidade
18.
J Med Chem ; 66(23): 15990-16001, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38052451

RESUMO

Stereoselectivity can be most relevant in drug metabolism and receptor binding. Although drug membrane transport might be equally important for small-molecule pharmacokinetics, the extent of stereoselectivity in membrane transport is largely unknown. Here, we characterized the stereoselective transport of 18 substrates of SLC22 organic cation transporters (OCTs) 1, 2, and 3. OCT2 and OCT3 showed highly stereoselective cell uptake with several substrates and, interestingly, often with opposite stereoselectivity. In contrast, transport by OCT1 was less stereoselective, although (R)-tamsulosin was transported by OCT1 with higher apparent affinity than the (S)-enantiomer. Using OCT1 and CYP2D6 co-overexpressing cells, an additive effect of the stereoselectivities was demonstrated. This indicates that pharmacokinetic stereoselectivity may be the result of combined effects in transport and metabolism. This study highlights that the pronounced polyspecificity of OCTs not contradicts stereoselectivity in the transport. Nevertheless, stereoselectivity is highly substrate-specific and for most substrates and OCTs, there was no major selectivity.


Assuntos
Proteínas de Transporte de Cátions Orgânicos , Transportador 1 de Cátions Orgânicos , Transportador 1 de Cátions Orgânicos/metabolismo , Transporte Biológico , Ligação Proteica , Cátions , Transportador 2 de Cátion Orgânico/metabolismo
19.
Biomed Pharmacother ; 161: 114454, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36871537

RESUMO

The organic cation transporter 1 (OCT1) mediates the cell uptake and cytochrome P450 2D6 (CYP2D6) the metabolism of many cationic substrates. Activities of OCT1 and CYP2D6 are affected by enormous genetic variation and frequent drug-drug interactions. Single or combined deficiency of OCT1 and CYP2D6 might result in dramatic differences in systemic exposure, adverse drug reactions, and efficacy. Thus, one should know what drugs are affected to what extent by OCT1, CYP2D6 or both. Here, we compiled all data on CYP2D6 and OCT1 drug substrates. Among 246 CYP2D6 substrates and 132 OCT1 substrates, we identified 31 shared substrates. In OCT1 and CYP2D6 single and double-transfected cells, we studied which, OCT1 or CYP2D6, is more critical for a given drug and whether there are additive, antagonistic or synergistic effects. In general, OCT1 substrates were more hydrophilic than CYP2D6 substrates and smaller in size. Inhibition studies showed unexpectedly pronounced inhibition of substrate depletion by shared OCT1/CYP2D6 inhibitors. In conclusion, there is a distinct overlap in the OCT1/CYP2D6 substrate and inhibitor spectra, so in vivo pharmacokinetics and -dynamics of shared substrates may be significantly affected by frequent OCT1- and CYP2D6-polymorphisms and by comedication with shared inhibitors.


Assuntos
Citocromo P-450 CYP2D6 , Transportador 1 de Cátions Orgânicos , Citocromo P-450 CYP2D6/metabolismo , Transportador 1 de Cátions Orgânicos/genética , Transportador 1 de Cátions Orgânicos/metabolismo
20.
Pharmaceutics ; 15(11)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38004576

RESUMO

(1) Background: In critically ill cardiac patients, parenteral and enteral food and drug administration routes may be used. However, it is not well known how drug absorption and metabolism are altered in this group of adult patients. Here, we analyze drug absorption and metabolism in patients after cardiogenic shock using the pharmacokinetics of therapeutically indicated esomeprazole. (2) Methods: The pharmacokinetics of esomeprazole were analyzed in a consecutive series of patients with cardiogenic shock and controls before and after elective cardiac surgery. Esomeprazole was administered orally or with a nasogastric tube and once as an intravenous infusion. (3) Results: The maximum plasma concentration and AUC of esomeprazole were, on average, only half in critically ill patients compared with controls (p < 0.005) and remained lower even seven days later. Interestingly, esomeprazole absorption was also markedly compromised on day 1 after elective surgery. The metabolites of esomeprazole showed a high variability between patients. The esomeprazole sulfone/esomeprazole ratio reflecting CYP3A4 activity was significantly lower in critically ill patients even up to day 7, and this ratio was negatively correlated with CRP values (p = 0.002). The 5'-OH-esomeprazole and 5-O-desmethyl-esomeprazol ratios reflecting CYP2C19 activity did not differ significantly between critically ill and control patients. (4) Conclusions: Gastrointestinal drug absorption can be significantly reduced in critically ill cardiac patients compared with elective patients with stable cardiovascular disease. The decrease in bioavailability indicates that, under these conditions, any vital medication should be administered intravenously to maintain high levels of medications. After shock, hepatic metabolism via the CYP3A4 enzyme may be reduced.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA