Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Nano ; 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38108267

RESUMO

Structural disorder can improve the optical properties of metasurfaces, whether it is emerging from some large-scale fabrication methods or explicitly designed and built lithographically. For example, correlated disorder, induced by a minimum inter-nanostructure distance or by hyperuniformity properties, is particularly beneficial for light extraction. Inspired by topology, we introduce numerical descriptors to provide quantitative measures of disorder with universal properties, suitable to treat both uncorrelated and correlated disorder at all length scales. The accuracy of these topological descriptors is illustrated both theoretically and experimentally by using them to design plasmonic metasurfaces with controlled disorder that we then correlate to the strength of their surface lattice resonances. These descriptors are an example of topological tools that can be used for the fast and accurate design of disordered structures or as aid in improving their fabrication methods.

2.
Sci Rep ; 8(1): 5341, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29593257

RESUMO

Quantitative features that can currently be obtained from medical imaging do not provide a complete picture of Chronic Obstructive Pulmonary Disease (COPD). In this paper, we introduce a novel analytical tool based on persistent homology that extracts quantitative features from chest CT scans to describe the geometric structure of the airways inside the lungs. We show that these new radiomic features stratify COPD patients in agreement with the GOLD guidelines for COPD and can distinguish between inspiratory and expiratory scans. These CT measurements are very different to those currently in use and we demonstrate that they convey significant medical information. The results of this study are a proof of concept that topological methods can enhance the standard methodology to create a finer classification of COPD and increase the possibilities of more personalized treatment.


Assuntos
Diagnóstico por Imagem , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Doença Pulmonar Obstrutiva Crônica/patologia , Diagnóstico por Imagem/métodos , Humanos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Testes de Função Respiratória , Índice de Gravidade de Doença , Tomografia Computadorizada por Raios X
3.
J Cheminform ; 10(1): 54, 2018 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-30460426

RESUMO

Topological data analysis is a family of recent mathematical techniques seeking to understand the 'shape' of data, and has been used to understand the structure of the descriptor space produced from a standard chemical informatics software from the point of view of solubility. We have used the mapper algorithm, a TDA method that creates low-dimensional representations of data, to create a network visualization of the solubility space. While descriptors with clear chemical implications are prominent features in this space, reflecting their importance to the chemical properties, an unexpected and interesting correlation between chlorine content and rings and their implication for solubility prediction is revealed. A parallel representation of the chemical space was generated using persistent homology applied to molecular graphs. Links between this chemical space and the descriptor space were shown to be in agreement with chemical heuristics. The use of persistent homology on molecular graphs, extended by the use of norms on the associated persistence landscapes allow the conversion of discrete shape descriptors to continuous ones, and a perspective of the application of these descriptors to quantitative structure property relations is presented.

4.
Mol Genet Genomic Med ; 3(3): 182-8, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26029704

RESUMO

Many common diseases have a complex genetic basis in which large numbers of genetic variations combine with environmental factors to determine risk. However, quantifying such polygenic effects has been challenging. In order to address these difficulties we developed a global measure of the information content of an individual's genome relative to a reference population, which may be used to assess differences in global genome structure between cases and appropriate controls. Informally this measure, which we call relative genome information (RGI), quantifies the relative "disorder" of an individual's genome. In order to test its ability to predict disease risk we used RGI to compare single-nucleotide polymorphism genotypes from two independent samples of women with early-onset breast cancer with three independent sets of controls. We found that RGI was significantly elevated in both sets of breast cancer cases in comparison with all three sets of controls, with disease risk rising sharply with RGI. Furthermore, these differences are not due to associations with common variants at a small number of disease-associated loci, but rather are due to the combined associations of thousands of markers distributed throughout the genome. Our results indicate that the information content of an individual's genome may be used to measure the risk of a complex disease, and suggest that early-onset breast cancer has a strongly polygenic component.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA