Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 625, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635439

RESUMO

A balance between stiffness and compliance is essential to normal bladder function, and changes in the mechanical properties of the bladder wall occur in many bladder pathologies. These changes are often associated with the release of basic secretagogues that in turn drive the release of inflammatory mediators from mast cells. Mast cell degranulation by basic secretagogues is thought to occur by activating an orphan receptor, Mas-related G protein-coupled receptor B2 (Mrgprb2). We explored the effects of the putative mast cell degranulator and Mrgprb2 agonist Compound 48/80 on urinary bladder wall mechanical compliance, smooth muscle contractility, and urodynamics, and if these effects were mast cell dependent. In wild-type mice, Mrgprb2 receptor mRNA was expressed in both the urothelium and smooth muscle layers. Intravesical instillation of Compound 48/80 decreased intermicturition interval and void volume, indicative of bladder overactivity. Compound 48/80 also increased bladder compliance while simultaneously increasing the amplitude and leading slope of transient pressure events during ex vivo filling and these effects were inhibited by the Mrgprb2 antagonist QWF. Surprisingly, all effects of Compound 48/80 persisted in mast cell-deficient mice, suggesting these effects were independent of mast cells. These findings suggest that Compound 48/80 degrades extracellular matrix and increases urinary bladder smooth muscle excitability through activation of Mrgprb2 receptors located outside of mast cells. Thus, the pharmacology and physiology of Mrgprb2 in the urinary bladder is of potential interest and importance in terms of treating lower urinary tract dysfunction.


Assuntos
Mastócitos , Bexiga Urinária , Camundongos , Animais , Bexiga Urinária/metabolismo , Mastócitos/metabolismo , p-Metoxi-N-metilfenetilamina/farmacologia , Secretagogos/farmacologia , Receptores Acoplados a Proteínas G/metabolismo
2.
Biomech Model Mechanobiol ; 22(5): 1685-1695, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37249760

RESUMO

Optimal bladder compliance is essential to urinary bladder storage and voiding functions. Calculated as the change in filling volume per change in pressure, bladder compliance is used clinically to characterize changes in bladder wall biomechanical properties that associate with lower urinary tract dysfunction. But because this method calculates compliance without regard to wall structure or wall volume, it gives little insight into the mechanical properties of the bladder wall during filling. Thus, we developed Pentaplanar Reflected Image Macroscopy (PRIM): a novel ex vivo imaging method to accurately calculate bladder wall stress and stretch in real time during bladder filling. The PRIM system simultaneously records intravesical pressure, infused volume, and an image of the bladder in five distinct visual planes. Wall thickness and volume were then measured and used to calculate stress and stretch during filling. As predicted, wall stress was nonlinear; only when intravesical pressure exceeded ~ 15 mmHg did bladder wall stress rapidly increase with respect to stretch. This method of calculating compliance as stress vs stretch also showed that the mechanical properties of the bladder wall remain similar in bladders of varying capacity. This study demonstrates how wall tension, stress and stretch can be measured, quantified, and used to accurately define bladder wall biomechanics in terms of actual material properties and not pressure/volume changes. This method is especially useful for determining how changes in bladder biomechanics are altered in pathologies where profound bladder wall remodeling occurs, such as diabetes and spinal cord injury.


Assuntos
Pelve , Bexiga Urinária , Fenômenos Biomecânicos , Complacência (Medida de Distensibilidade)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA