Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 9(5): 5298-5318, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38343978

RESUMO

Effective communication between immune and bone-forming cells is crucial for the successful healing of bone defects. This study aimed to assess the potential of a decellularized placental sponge (DPS) as a coculture system for inducing M1/M2 polarization in macrophages and promoting osteogenic differentiation in adipose-derived mesenchymal stem cells (AD-MSCs), both in vitro and in vivo. We prepared the DPS and conducted a comprehensive characterization of its biomechanical properties, antibacterial activity, and biocompatibility. In vitro, we examined the influence of the DPS on the polarization of macrophages cocultured with AD-MSCs through nitric oxide assays, cytokine assays, phagocytosis tests, and real-time polymerase chain reaction (PCR). For in vivo assessment, we utilized micro-CT imaging, histological evaluations, and real-time PCR to determine the impact of the DPS seeded with Wharton's jelly mesenchymal stem cells (WJ-MSCs) on bone regeneration in a calvarial bone defect model. The coculture of AD-MSCs and macrophages on the DPS led to increased production of IL-10, upregulation of CD206, Arg1, and YM1 gene expression, and enhanced phagocytic capacity for apoptotic thymocytes. Concurrently, it reduced the secretion of TNF-α and nitric oxide (NO), downregulated the expression of CD86, NOS2, and IRF5 genes, and decreased macrophage phagocytosis of yeast. These results indicated polarization of macrophages toward an M2-like phenotype. In vivo, the presence of the DPS resulted in enhanced bone formation at the defect site. Immunostaining demonstrated that both the DPS and DPS + WJ-MSC constructs induced macrophage polarization toward an M2 phenotype, as compared to the control defect. In conclusion, this immunomodulatory effect, coupled with its biocompatibility and biomechanical properties resembling natural bone, positions the DPS as an attractive candidate for further exploration in the field of bone tissue engineering and regenerative medicine.

2.
Int J Biol Macromol ; 262(Pt 1): 129876, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38310055

RESUMO

Impaired polarization of M1 to M2 macrophages has been reported in diabetic wounds. We aimed to improve this polarization by down-regulation of expression of the "Suppressor of Cytokine Signaling 3" (SOCS3) gene in macrophages. Two oligodeoxynucleotide (ASO) sequences were designed against SOC3 mRNA and were loaded to mannosylated-polyethyleneimine (Man-PEI). The optimum N/P ratio for Man-PEI-ASO was determined to be 8 based on loading efficiency, particle size, zeta potential, cellular uptake and cytotoxicity assay. pH stability of ASO in Man-PEI-ASO and its protection from DNase I was confirmed. After in vitro treatment of macrophages with Man-PEI-ASO, SOCS3 was downregulated, SOCS1 upregulated, and SOCS1/SOCS3 ratio increased. Also, expressions of macrophage markers of M2 (IL-10, Arg1, CD206) increased and those of M1 (IL-1ß, NOS2, CD68) decreased, and secretion of pro-inflammatory cytokines (TNF-α and IL-1ß) decreased while that of anti-inflammatory cytokine IL-4 increased. All suggested a polarization into M2 phenotype. Finally, the Man-PEI-ASO was loaded in hydrogel and applied to a diabetic wound model in mice. It improved the healing to the level observed in non-diabetic wounds. We show that using antisense sequences against SOC3 mRNA, macrophage polarization could be directed into the M2 phenotype and healing of diabetic wound could be highly improved.


Assuntos
Diabetes Mellitus , Macrófagos , Proteínas Supressoras da Sinalização de Citocina , Cicatrização , Animais , Humanos , Camundongos , Citocinas/genética , Citocinas/metabolismo , Diabetes Mellitus/metabolismo , Macrófagos/metabolismo , RNA Mensageiro/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/genética , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Proteínas Supressoras da Sinalização de Citocina/genética , Proteínas Supressoras da Sinalização de Citocina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA