Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Vet Pathol ; 60(3): 324-335, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36879492

RESUMO

Egyptian rousette bats (ERBs; Rousettus aegyptiacus; family Pteropodidae) are associated with a growing number of bunyaviruses of public health importance, including Kasokero virus (KASV), which was first identified as a zoonosis in Uganda in 1977. In this study, formalin-fixed paraffin-embedded tissues from a previous experiment in which KASV infection was confirmed in 18 experimentally infected ERBs were used for an in-depth analysis using histopathology, in situ hybridization (ISH) for detection of viral RNA, immunohistochemistry (IHC) to assess the mononuclear phagocyte system response, and quantitative digital image analysis to investigate virus clearance from the liver and spleen within a spatial context. Significant gross and histological lesions were limited to the liver, where KASV-infected bats developed mild to moderate, acute viral hepatitis, which was first observed at 3 days postinfection (DPI), peaked at 6 DPI, and was resolved by 20 DPI. A subset of bats had glycogen depletion (n = 10) and hepatic necrosis (n = 3), rarely with intralesional bacteria (n = 1). Virus replication was confirmed by ISH in the liver, spleen, lymph nodes, and tongue. In the liver, KASV replicated in the cytoplasm of hepatocytes, to a lesser extent in mononuclear phagocytes, and rarely in presumptive endothelial cells. Most KASV RNA, as detected by ISH, was cleared from the spleen and liver by 6 DPI. It is concluded that ERBs have effective mechanisms to respond to this virus, clearing it without evidence of clinical disease.


Assuntos
Quirópteros , Viroses , Animais , Reservatórios de Doenças , Células Endoteliais , Viroses/veterinária , Fígado/patologia , RNA Viral
2.
Microb Pathog ; 173(Pt A): 105814, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36220397

RESUMO

To detail early tissue distribution and innate immune response to rabbit hemorrhagic disease virus 2 (RHDV2), 13 rabbits were orally (Oryctolagus cuniculus) inoculated with liver homogenate made from a feral rabbit that succumbed to RHDV2 during the 2020 outbreak in Oregon, USA. Rabbits were monitored regularly, with euthanasia and collection of tissues and swabs, at 12, 24, 36, 48, 96, and 144 h post inoculation. Livers from these rabbits were positive by RT-rtPCR for presence of the virus. Using RNAscope for viral and replicative intermediates, rabbits had detectable viral genomic RNA at each time point, initially within the gastrointestinal tract, then in the liver by 36 h post inoculation. Also using RNAscope, there were increasing amounts of mRNA coding for TNF-α, IL-6, and IL-1ß within the liver and spleen through 48 h post inoculation. The results of this study aided our understanding of the local innate immune response to RHDV2, as well as aspects of pathogenesis.


Assuntos
Infecções por Caliciviridae , Vírus da Doença Hemorrágica de Coelhos , Animais , Coelhos , Vírus da Doença Hemorrágica de Coelhos/genética , Infecções por Caliciviridae/veterinária , Surtos de Doenças , Genoma Viral , RNA Viral , Filogenia
3.
Vet Pathol ; 59(1): 75-81, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34794360

RESUMO

Selected lymphoid and reproductive tissues were examined from groups of 3-week-old chickens and 62-week-old hens that were inoculated choanally and conjunctivally with 106 EID50 of a virulent Newcastle disease virus (NDV) isolate from the California 2018-2020 outbreak, and euthanized at 1, 2, and 3 days postinfection. In the 3-week-old chickens, immunohistochemistry for NDV and for T and B cell lymphocytes, as well as in situ hybridization for IL-1ß, IL-6, IFN-γ, and TNF-α revealed extensive expression of IL-1ß and IL-6 in lymphoid tissues, often coinciding with NDV antigen. IFN-γ was only expressed infrequently in the same lymphoid tissues, and TNF-α was rarely expressed. T-cell populations initially expanded but by day 3 their numbers were below control levels. B cells underwent a similar expansion but remained elevated in some tissues, notably spleen, cecal tonsils, and cloacal bursa. Cytokine expression in the 62-week-old hens was overall lower than in the 3-week-old birds, and there was more prolonged infiltration of both T and B cells in the older birds. The strong pro-inflammatory cytokine response in young chickens is proposed as the reason for more severe disease.


Assuntos
Citocinas , Doença de Newcastle , Doenças das Aves Domésticas , Animais , Galinhas , Citocinas/genética , Feminino , Expressão Gênica , Doença de Newcastle/genética , Doença de Newcastle/imunologia , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/imunologia
4.
Vet Pathol ; 58(1): 123-135, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33280540

RESUMO

Runting stunting syndrome (RSS) in commercial chickens has been reported worldwide, and although several studies have attempted to clarify the cause and describe the lesions, there are gaps in knowledge of the epidemiology, pathogenesis, and etiology. The study objective was to use commercial chicks naturally affected by RSS to describe the histologic changes of RSS in all segments of the small intestine in chicks of different ages and to identify viral gene sequences in affected chicks and their association with histologic lesions. Chicks lacking clinical signs but from the same houses and from unaffected houses were used as controls. The average weight of affected chicks was significantly lower than expected for their flocks. Macroscopically, the small intestines had paler serosa, with watery, mucoid, or foamy contents and poorly digested food. Histologic lesions were characterized by necrotic crypts, crypt dilation, and flattening of the crypt epithelium. Histomorphometry of the intestines revealed villous atrophy especially in the jejunum and ileum. Histologic changes in other organs were not observed. Random next-generation sequencing of total RNA extracted from formalin-fixed paraffin-embedded tissues detected avian nephritis virus, avian rotavirus, and picornavirus in jejunal segments from 7-day-old chicks. No viruses were detected in the jejunum of 1-day-old chicks. Detection of picornaviral reads was significantly associated (P < .05) with histologic lesions of RSS. Sequence analysis of the picornavirus revealed genetic similarity with the genus Gallivirus. Using in situ hybridization for galliviral nucleic acid sequences, the signal was associated with crypt lesion severity, although signal was detected both in chicks with and without RSS.


Assuntos
Avastrovirus , Doenças das Aves Domésticas , Animais , Galinhas , Transtornos do Crescimento/veterinária , Intestinos
5.
Microbiol Immunol ; 64(5): 366-376, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32096557

RESUMO

Worldwide, many emerging porcine parvoviruses (PPVs) have been linked to porcine circovirus-2 (PCV2) associated disease (PCVAD), which includes post-weaning multi-systemic wasting syndrome (PMWS), PCV2-related reproductive failure (PCV2-RF), as well as other syndromes. To determine the DNA prevalence of PPVs and their relationship with PMWS and PCV2-RF in Mexico, 170 formalin-fixed paraffin-embedded tissues were selected from archival collections to detect PPVs using a nested polymerase chain reaction. The tissues were composed of 50 PMWS cases, 20 age-matched tissues from healthy pigs, 56 PCV2-related reproductive failure (PCV2+ -RF) cases, and 44 PCV2- -RF cases. Overall, PPV2 and PPV6 were the most prevalent species (90.0% and 74.7%, respectively). In 8-11 week old pigs, the highest prevalence was for PPV6 and PPV3. Concerning reproductive failure, the PCV2-affected farms had a significantly higher prevalence for PPV6 (61.6%) and PPV5 (36.4%) than the PCV2-unaffected farms (35.0% and 5.0%, respectively). The concurrent infection rate was high, being significant for PPV2/PPV4 and PPV1/PPV5 within the PMWS cases and for PPV6/PPV5 among the PCV2+ -RF tissues. PPV5 showed a significant relationship with PMWS, whereas PPV5 and PPV6 were significant for PCVAD. The prevalence and coinfection rate of PPVs in Mexico were markedly higher than that described in other countries, denoting that PPV5 and PPV6 might have a potential role in PCVAD in Mexico. It is concluded that it is likely that the density population of pigs in Mexico is contributing to high PPV inter-species and PCV2 coinfections which might lead to a different pathogenic outcome.


Assuntos
Infecções por Circoviridae/veterinária , Circovirus/isolamento & purificação , Coinfecção , Infecções por Parvoviridae/veterinária , Parvovirus Suíno/isolamento & purificação , Doenças dos Suínos/virologia , Animais , Infecções por Circoviridae/epidemiologia , Infecções por Circoviridae/virologia , Circovirus/genética , Coinfecção/veterinária , Coinfecção/virologia , DNA Viral/isolamento & purificação , México , Infecções por Parvoviridae/epidemiologia , Infecções por Parvoviridae/virologia , Parvovirus Suíno/genética , Prevalência , Estudos Retrospectivos , Suínos/virologia , Doenças dos Suínos/epidemiologia
6.
Virus Genes ; 55(4): 502-512, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31089865

RESUMO

Highly virulent Newcastle disease virus (NDV) causes Newcastle disease (ND), which is a threat to poultry production worldwide. Effective disease management requires approaches to accurately determine sources of infection, which involves tracking of closely related viruses. Next-generation sequencing (NGS) has emerged as a research tool for thorough genetic characterization of infectious organisms. Previously formalin-fixed paraffin-embedded (FFPE) tissues have been used to conduct retrospective epidemiological studies of related but genetically distinct viruses. However, this study extends the applicability of NGS for complete genome analysis of viruses from FFPE tissues to track the evolution of closely related viruses. Total RNA was obtained from FFPE spleens, lungs, brains, and small intestines of chickens in 11 poultry flocks during disease outbreaks in Pakistan. The RNA was randomly sequenced on an Illumina MiSeq instrument and the raw data were analyzed using a custom data analysis pipeline that includes de novo assembly. Genomes of virulent NDV were detected in 10/11 birds: eight nearly complete (> 95% coverage of concatenated coding sequence) and two partial genomes. Phylogeny of the NDV complete genome coding sequences was compared to current methods of analysis based on the full and partial fusion genes and determined that the approach provided a better phylogenetic resolution. Two distinct lineages of sub-genotype VIIi NDV were identified to be simultaneously circulating in Pakistani poultry. Non-targeted NGS of total RNA from FFPE tissues coupled with de novo assembly provided a reliable, safe, and affordable method to conduct epidemiological and evolutionary studies to facilitate management of ND in Pakistan.


Assuntos
Galinhas , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/genética , Doenças das Aves Domésticas/virologia , Animais , Bases de Dados de Ácidos Nucleicos , Surtos de Doenças/veterinária , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Doença de Newcastle/epidemiologia , Vírus da Doença de Newcastle/isolamento & purificação , Paquistão/epidemiologia , Filogenia , RNA Viral , Análise de Sequência de RNA , Proteínas Virais de Fusão/genética , Proteínas Estruturais Virais/análise
7.
BMC Vet Res ; 15(1): 317, 2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31484573

RESUMO

BACKGROUND: Newcastle disease (ND), which is caused by infections of poultry species with virulent strains of Avian orthoavulavirus-1, also known as avian paramyxovirus 1 (APMV-1), and formerly known as Newcastle disease virus (NDV), may cause neurological signs and encephalitis. Neurological signs are often the only clinical signs observed in birds infected with neurotropic strains of NDV. Experimental infections have shown that the replication of virulent NDV (vNDV) strains is in the brain parenchyma and is possibly confined to neurons and ependymal cells. However, little information is available on the ability of vNDV strains to infect subset of glial cells (astrocytes, oligodendrocytes, and microglia). The objective of this study was to evaluate the ability of NDV strains of different levels of virulence to infect a subset of glial cells both in vitro and in vivo. Thus, neurons, astrocytes and oligodendrocytes from the brains of day-old White Leghorn chickens were harvested, cultured, and infected with both non-virulent (LaSota) and virulent, neurotropic (TxGB) NDV strains. To confirm these findings in vivo, the tropism of three vNDV strains with varying pathotypes (SA60 [viscerotropic], TxGB [neurotropic], and Tx450 [mesogenic]) was assessed in archived formalin-fixed material from day-old chicks inoculated intracerebrally. RESULTS: Double immunofluorescence for NDV nucleoprotein and cellular markers showed that both strains infected at least 20% of each of the cell types (neurons, astrocytes, and oligodendrocytes). At 24 h post-inoculation, TxGB replicated significantly more than LaSota. Double immunofluorescence (DIFA) with markers for neurons, astrocytes, microglia, and NDV nucleoprotein detected the three strains in all three cell types at similar levels. CONCLUSION: These data indicate that similar to other paramyxoviruses, neurons and glial cells (astrocytes, oligodendrocytes, and microglia) are susceptible to vNDV infection, and suggest that factors other than cellular tropism are likely the major determinant of the neurotropic phenotype.


Assuntos
Galinhas , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/patogenicidade , Doenças das Aves Domésticas/virologia , Tropismo , Animais , Astrócitos/virologia , Células Cultivadas , Imunofluorescência , Microglia/virologia , Neurônios/virologia , Oligodendroglia/virologia , Especificidade da Espécie , Virulência , Replicação Viral
8.
Semin Diagn Pathol ; 36(3): 193-196, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31053264

RESUMO

Transboundary animal diseases are those that can move through a population of animals and cause considerable economic and societal harm. Many have high mortality, and in low-income areas, can quickly destroy herds and flocks of agricultural animals. Although much of One Health, which sits at the intersection of human, animal, and environmental health, focuses on the zoonotic diseases, in fact transboundary animal diseases can harm both humans and the environment through robbing communities of livelihoods and nutrition, and creating environmental contamination through extensive carcass disposal requirements. Transboundary animal diseases continue to circulate in the world, predominantly in low-income regions or in areas with less than optimal biosecurity. This paper will review three prominent emerging and re-emerging transboundary animal diseases, describing their pathology and diagnostics, as well as economic and food security impacts, which are substantial. Attention to these devastating diseases should be a One Health priority.


Assuntos
Doenças dos Animais/epidemiologia , Doenças Transmissíveis Emergentes/epidemiologia , Abastecimento de Alimentos , Saúde Única , Doenças dos Animais/diagnóstico , Doenças dos Animais/patologia , Doenças dos Animais/terapia , Animais , Doenças Transmissíveis Emergentes/diagnóstico , Doenças Transmissíveis Emergentes/patologia , Doenças Transmissíveis Emergentes/terapia , Saúde Ambiental , Humanos , Zoonoses
9.
Virol J ; 15(1): 9, 2018 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-29329546

RESUMO

BACKGROUND: Newcastle disease viruses (NDV) are highly contagious and cause disease in both wild birds and poultry. A pigeon-adapted variant of genotype VI NDV, often termed pigeon paramyxovirus 1, is commonly isolated from columbids in the United States and worldwide. Complete genomic characterization of these genotype VI viruses circulating in wild columbids in the United States is limited, and due to the genetic variability of the virus, failure of rapid diagnostic detection has been reported. Therefore, in this study, formalin-fixed paraffin-embedded (FFPE) samples were subjected to next-generation sequencing (NGS) to identify and characterize these circulating viruses, providing valuable genetic information. NGS enables multiple samples to be deep-sequenced in parallel. When used on FFPE samples, this methodology allows for retrospective studies of infectious organisms. METHODS: FFPE wild pigeon tissue samples (kidney, liver and spleen) from 10 mortality events in the U.S. between 2010 and 2016 were analyzed using NGS to detect and sequence NDV genomes from randomly amplified total RNA. Results were compared to the previously published immunohistochemistry (IHC) results conducted on the same samples. Additionally, phylogenetic analyses were conducted on the complete and partial fusion gene and complete genome coding sequences. RESULTS: Twenty-three out of 29 IHC-positive FFPE pigeon samples were identified as positive for NDV by NGS. Positive samples produced an average genome coverage of 99.6% and an average median depth of 199. A previously described sub-genotype (VIa) and a novel sub-genotype (VIn) of NDV were identified as the causative agent of 10 pigeon mortality events in the U.S. from 2010 to 2016. The distribution of these viruses from the North American lineages match the distribution of the Eurasian collared-doves and rock pigeons in the U.S. CONCLUSIONS: This work reports the first successful evolutionary study using deep sequencing of complete NDV genomes from FFPE samples of wild bird origin. There are at least two distinct U.S. lineages of genotype VI NDV maintained in wild pigeons that are continuously evolving independently from each other and have no evident epidemiological connections to viruses circulating abroad. These findings support the hypothesis that columbids are serving as reservoirs of virulent NDV in the U.S.


Assuntos
Columbidae/virologia , Evolução Molecular , Variação Genética , Genoma Viral , Genótipo , Doença de Newcastle/epidemiologia , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/genética , Animais , Vírus da Doença de Newcastle/classificação , Filogenia , Vigilância em Saúde Pública , Estados Unidos/epidemiologia , Sequenciamento Completo do Genoma
10.
J Vet Med Educ ; 45(1): 38-42, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28795905

RESUMO

Understanding of global systems is essential for veterinarians seeking to work in realms outside of their national domain. In the global system, emphasis remains on the public sector, and the current curricular emphasis in developed countries is on private clinical practice for the domestic employment market. There is a resulting lack of competency at graduation for effective engagement internationally. The World Organisation for Animal Health (OIE) has created standards for public sector operations in animal health, which must be functional to allow for sustainable development. This public sector, known as the Veterinary Services, or VS, serves to control public good diseases, and once effectively built and fully operational, allows for the evolution of a functional private sector, focused on private good diseases. Until the VS is fully functional, support of private good services is non-sustainable and any efforts delivered are not long lasting. As new graduates opt for careers working in the international development sector, it is essential that they understand the OIE guidelines to help support continuing improvement. Developing global veterinarians by inserting content into the veterinary curriculum on how public systems can operate effectively could markedly increase the potential of our professional contributions globally, and particularly in the areas most in need.


Assuntos
Bem-Estar do Animal , Competência Clínica , Educação em Veterinária , Setor Público , Médicos Veterinários , Animais , Saúde Global , Humanos , Cooperação Internacional
11.
Virol J ; 12: 122, 2015 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-26253150

RESUMO

BACKGROUND: In mammals, interleukin 2 (IL-2) has been shown to decrease replication or attenuate pathogenicity of numerous viral pathogens (herpes simplex virus, vaccinia virus, human respiratory syncytial virus, human immunodeficiency virus) by activating natural killer cells (NK), cytotoxic T lymphocytes and expanding subsets of memory cells. In chickens, IL-2 has been shown to activate T cells, and as such it might have the potential to affect replication and pathogenesis of Newcastle disease virus (NDV). METHODS: To assess the effect of IL-2 during NDV infection in chickens, we produced a recombinant virulent NDV strain expressing chicken IL-2 (rZJ1-IL2). The effects of IL-2 expression were investigated in vivo using the intracerebral pathogenicity index (ICPI) in day-old chicks and pathogenesis experiments in 4-week-old chickens. In these studies, rZJ1-IL2 was compared to a control virus expressing the green fluorescent protein (rZJ1-GFP). Assessed parameters included survival curves, detailed histological and immunohistochemical grading of lesions in multiple organs, and virus isolation in blood, spleen and mucosal secretions of infected birds. RESULTS: At the site of infection (eyelid), expression of IL-2 was demonstrated in areas of rZJ-IL2 replication, confirming IL-2 production in vivo. Compared to rZJ1-GFP strain, rZJ1-IL2 caused milder lesions and displayed decreased viral load in blood, spleen and mucosal secretions of infected birds. In the rZJ1-IL2-infected group, virus level in the blood peaked at day 4 post-infection (pi) (10(3.46) EID50 /0.1 ml) and drastically decreased at day 5 pi (10(0.9) EID50/0.1 ml), while in the rZJ1-GFP-infected group virus levels in the blood reached 10(5.35) EID50/0.1 ml at day 5. However, rZJ1-IL2-infected groups presented survival curves similar to control birds infected with rZJ1-GFP, with comparable clinical signs and 100 % mortality. Further, expression of IL-2 did not significantly affect the ICPI scores, compared to rZJ1-GFP strain. CONCLUSIONS: Increased expression of chicken IL-2 during virulent NDV replication in naïve chickens decreased viral titers in blood, spleens, oral and cloacal secretions on day 4-5 post infection. This is consistent with the previously described role of IL-2 in enhancing the clearance of viruses in mammals, such as human respiratory syncytial virus.


Assuntos
Expressão Gênica , Interleucina-2/genética , Doença de Newcastle/genética , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/fisiologia , Carga Viral , Animais , Linhagem Celular Transformada , Galinhas , Doença de Newcastle/patologia , Vírus da Doença de Newcastle/isolamento & purificação , Vírus da Doença de Newcastle/patogenicidade , Proteínas Virais/genética , Proteínas Virais/metabolismo , Virulência , Replicação Viral
12.
Biologicals ; 43(2): 136-45, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25511007

RESUMO

While there is typically 100% survivability in birds challenged with vNDV under experimental conditions, either with vaccines formulated with a strain homologous or heterologous (different genotype) to the challenge virus, vaccine deficiencies are often noted in the field. We have developed an improved and more stringent protocol to experimentally evaluate live NDV vaccines, and showed for the first time under experimental conditions that a statistically significant reduction in mortality can be detected with genotype matched vaccines. Using both vaccine evaluation protocols (traditional and improved), birds were challenged with a vNDV of genotype XIII and the efficacy of live heterologous (genotype II) and homologous (genotype XIII) NDV vaccines was compared. Under traditional vaccination conditions there were no differences in survival upon challenge, but the homologous vaccine induced significantly higher levels of antibodies specific to the challenge virus. With the more stringent challenge system (multiple vaccine doses and early challenge with high titers of vNDV), the birds administered the homologous vaccine had superior humoral responses, reduced clinical signs, and reduced mortality levels than those vaccinated with the heterologous vaccine. These results provide basis for the implementation of more sensitive methods to evaluate vaccine efficacy.


Assuntos
Doença de Newcastle/prevenção & controle , Vírus da Doença de Newcastle , Vacinas Virais , Animais , Galinhas , Avaliação de Medicamentos , Vírus da Doença de Newcastle/química , Vírus da Doença de Newcastle/imunologia , Vacinação/métodos , Vacinas Virais/química , Vacinas Virais/imunologia , Vacinas Virais/farmacologia
13.
J Clin Microbiol ; 52(5): 1382-90, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24523463

RESUMO

An outbreak of Newcastle disease (ND) in poultry was reported in Belize in 2008. The characteristics of three virulent Newcastle disease virus (NDV) isolates from this outbreak (NDV-Belize-3/08, NDV-Belize-4/08, and NDV-Belize-12/08) were assessed by genomic analysis and by clinicopathological characterization in specific-pathogen-free (SPF) chickens. The results showed that all three strains belong to NDV genotype V and are virulent, as assessed by the intracerebral pathogenicity index and the polybasic amino acid sequence at the fusion protein cleavage site. In 4-week-old SPF chickens, NDV-Belize-3/08 behaved as a typical velogenic viscerotropic NDV strain, causing severe necrohemorrhagic lesions in the lymphoid organs, with systemic virus distribution. Phylogenetic analysis of multiple NDV genotype V representatives revealed that genotype V can be divided into three subgenotypes, namely, Va, Vb, and Vc, and that all tested Belizean isolates belong to subgenotype Vb. Furthermore, these isolates are nearly identical to a 2007 isolate from Honduras and appear to have evolved separately from other contemporary viruses circulating in Mexico, clustering into a new clade within NDV subgenotype Vb.


Assuntos
Doença de Newcastle/virologia , Vírus da Doença de Newcastle/genética , Virulência/genética , Animais , América Central , Galinhas/virologia , Análise por Conglomerados , Surtos de Doenças/veterinária , Genótipo , México , Filogenia , Doenças das Aves Domésticas/virologia , RNA Viral/genética , Análise de Sequência de DNA/métodos , Proteínas Virais de Fusão/genética
14.
Pathogens ; 13(8)2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39204289

RESUMO

Crimean-Congo hemorrhagic fever (CCHF) and Rift Valley fever (RVF) are among the list of emerging zoonotic diseases that require special attention and priority. RVF is one of the six priority diseases selected by the Senegalese government. Repeated epidemic episodes and sporadic cases of CCHF and RVF in Senegal motivated this study, involving a national cross-sectional serological survey to assess the distribution of the two diseases in this country throughout the small ruminant population. A total of 2127 sera from small ruminants (goat and sheep) were collected in all regions of Senegal. The overall seroprevalence of CCHF and RVF was 14.1% (IC 95%: 12.5-15.5) and 4.4% (95% CI: 3.5-5.3), respectively. The regions of Saint-Louis (38.4%; 95% CI: 30.4-46.2), Kolda (28.3%; 95% CI: 20.9-35.7), Tambacounda (22.2%; 95% CI: 15.8-28.6) and Kédougou (20.9%; 95% CI: 14.4-27.4) were the most affected areas. The risk factors identified during this study show that the age, species and sex of the animals are key factors in determining exposure to these two viruses. This study confirms the active circulation of CCHF in Senegal and provides important and consistent data that can be used to improve the surveillance strategy of a two-in-one health approach to zoonoses.

15.
J Clin Microbiol ; 51(2): 508-17, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23196361

RESUMO

A Newcastle disease virus (NDV) outbreak in chickens was reported in the Dominican Republic in 2008. The complete genome of this isolate, chicken/DominicanRepublic(JuanLopez)/499-31/2008 (NDV-DR499-31/08), and the fusion proteins of three other related viruses from the Dominican Republic and Mexico were sequenced and phylogenetically analyzed. Genetically, these four isolates were highly distinct from all other currently known isolates of NDV, and together, they fulfill the newly established criteria for inclusion as a novel genotype of NDV (genotype XVI). The lack of any reported isolation of viruses related to this group since 1986 suggests that virulent viruses of this genotype may have evolved unnoticed for 22 years. The NDV-DR499-31/08 isolate had an intracerebral pathogenicity index (ICPI) score of 1.88, and sequencing of the fusion cleavage site identified multiple basic amino acids and a phenylalanine at position 117, indicating this isolate to be virulent. These results were further confirmed by a clinicopathological assessment in vivo. In 4-week-old chickens, NDV-DR499-31/08 behaved as a velogenic viscerotropic strain with systemic virus distribution and severe necrohemorrhagic lesions targeting mainly the intestine and the lymphoid organs. The clear phylogenetic relationship between the 2008, 1986, and 1947 ancestral viruses suggests that virulent NDV strains may have evolved in unknown reservoirs in the Caribbean and surrounding regions and underlines the importance of continued and improved epidemiological surveillance strategies to detect NDV in wild-bird species and commercial poultry.


Assuntos
Evolução Molecular , Genótipo , Vírus da Doença de Newcastle/genética , Animais , Galinhas , Genoma Viral , Doença de Newcastle/patologia , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/classificação , Vírus da Doença de Newcastle/patogenicidade , Fenótipo , Filogenia , Doenças das Aves Domésticas/virologia , Proteínas Virais de Fusão/genética , Fatores de Virulência/genética
16.
Microb Pathog ; 61-62: 73-83, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23711962

RESUMO

The role of interferon gamma (IFN-γ) expression during Newcastle disease virus (NDV) infection in chickens is unknown. Infection of chickens with highly virulent NDV results in rapid death, which is preceded by increased expression of IFN-γ in target tissues. IFN-γ is a cytokine that has pleiotropic biological effects including intrinsic antiviral activity and immunomodulatory effects that may increase morbidity and mortality during infections. To better understand how IFN-γ contributes to NDV pathogenesis, the coding sequence of the chicken IFN-γ gene was inserted in the genome of the virulent NDV strain ZJ1 (rZJ1-IFNγ), and the effects of high levels of IFN-γ expression during infection were determined in vivo and in vitro. IFN-γ expression did not significantly affect NDV replication in fibroblast or in macrophage cell lines. However, it affected the pathogenesis of rZJ1-IFNγ in vivo. Relative to the virus expressing the green fluorescent protein (rZJ1-GFP) or lacking the IFN-γ insert (rZJ1-rev), expression of IFN-γ by rZJ1-IFNγ produced a marked decrease of pathogenicity in 4-week-old chickens, as evidenced by lack of mortality, decreased disease severity, virus shedding, and antigen distribution. These results suggest that early expression of IFN-γ had a significant protective role against the effects of highly virulent NDV infection in chickens, and further suggests that the level and timing of expression of this cytokine may be critical for the disease outcome. This is the first description of an in vivo attenuation of a highly virulent NDV by avian cytokines, and shows the feasibility to use NDV for cytokine delivery in chicken organs. This approach may facilitate the study of the role of other avian cytokines on the pathogenesis of NDV.


Assuntos
Galinhas/virologia , Interferon gama/metabolismo , Doença de Newcastle/imunologia , Vírus da Doença de Newcastle/patogenicidade , Animais , Linhagem Celular , Galinhas/imunologia , Fibroblastos/virologia , Interferon gama/genética , Interferon gama/imunologia , Macrófagos/virologia , Doença de Newcastle/mortalidade , Doença de Newcastle/patologia , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/imunologia , Virulência , Replicação Viral
18.
Avian Dis ; 57(1): 36-40, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23678727

RESUMO

Tracheas from chickens infected both in the field and experimentally with lentogenic Newcastle disease virus (also known as avian paramyxovirus-1 [APMV-1] and referred to here as "lentogenic NDV") were examined histopathologically to score degree of pathologic changes and by immunohistochemistry to determine presence of viral protein. In the field cases there was often a striking lack of correlation between severity of tracheal lesions and amount of immunohistochemical signal for APMV-1 protein. Experimental cases had minimal pathologic changes and also minimal immunohistochemical signal. Positive cells were often associated with surface deciliation. It may be that lentogenic NDV has only a minor role as a respiratory pathogen, merely compromising the mucosa to allow other respiratory pathogens to infect and worsen the clinical and pathologic presentation.


Assuntos
Galinhas , Imuno-Histoquímica/métodos , Doença de Newcastle/patologia , Vírus da Doença de Newcastle/isolamento & purificação , Traqueia/patologia , Animais , Anticorpos Antivirais/análise , Imuno-Histoquímica/veterinária , Doença de Newcastle/diagnóstico , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/classificação , Vírus da Doença de Newcastle/imunologia , Organismos Livres de Patógenos Específicos , Traqueia/química , Traqueia/virologia
19.
Front Vet Sci ; 10: 1235110, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37885618

RESUMO

Abomasal ulcers, an economic concern for all calf-raising farms, are usually silent until perforation occurs, at which time management is complicated and often unrewarding. This case study describes perforating ulcer in a 3-day-old Brahman heifer, occurring secondary to a congenital narrowing of the pylorus and proximal duodenum and leading to marked abomasal distention, leakage, and eventual peritonitis and sepsis.

20.
Antioxid Redox Signal ; 38(1-3): 183-197, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35754343

RESUMO

Aims: Though best known for its role in oxidative DNA damage repair, apurinic/apyrimidinic endonuclease 1 (APE1) is a multifunctional protein that regulates multiple host responses during oxidative stress, including the reductive activation of transcription factors. As knockout of the APE1-encoding gene, Apex1, is embryonically lethal, we sought to create a viable model with generalized inhibition of APE1 expression. Results: A hypomorphic (HM) mouse with decreased APE1 expression throughout the body was generated using a construct containing a neomycin resistance (NeoR) cassette knocked into the Apex1 site. Offspring were assessed for APE1 expression, breeding efficiency, and morphology with a focused examination of DNA damage in the stomach. Heterozygotic breeding pairs yielded 50% fewer HM mice than predicted by Mendelian genetics. APE1 expression was reduced up to 90% in the lungs, heart, stomach, and spleen. The HM offspring were typically smaller, and most had a malformed tail. Oxidative DNA damage was increased spontaneously in the stomachs of HM mice. Further, all changes were reversed when the NeoR cassette was removed. Primary gastric epithelial cells from HM mice differentiated more quickly and had more evidence of oxidative DNA damage after stimulation with Helicobacter pylori or a chemical carcinogen than control lines from wildtype mice. Innovation: A HM mouse with decreased APE1 expression throughout the body was generated and extensively characterized. Conclusion: The results suggest that HM mice enable studies of APE1's multiple functions throughout the body. The detailed characterization of the stomach showed that gastric epithelial cells from HM were more susceptible to DNA damage. Antioxid. Redox Signal. 38, 183-197.


Assuntos
Reparo do DNA , Estresse Oxidativo , Camundongos , Animais , Dano ao DNA , Oxirredução , Modelos Animais de Doenças , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Estômago , Endonucleases/genética , Endonucleases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA