Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 233
Filtrar
1.
Am J Hum Genet ; 110(1): 120-145, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36528028

RESUMO

Eukaryotic initiation factor-4A2 (EIF4A2) is an ATP-dependent RNA helicase and a member of the DEAD-box protein family that recognizes the 5' cap structure of mRNAs, allows mRNA to bind to the ribosome, and plays an important role in microRNA-regulated gene repression. Here, we report on 15 individuals from 14 families presenting with global developmental delay, intellectual disability, hypotonia, epilepsy, and structural brain anomalies, all of whom have extremely rare de novo mono-allelic or inherited bi-allelic variants in EIF4A2. Neurodegeneration was predominantly reported in individuals with bi-allelic variants. Molecular modeling predicts these variants would perturb structural interactions in key protein domains. To determine the pathogenicity of the EIF4A2 variants in vivo, we examined the mono-allelic variants in Drosophila melanogaster (fruit fly) and identified variant-specific behavioral and developmental defects. The fruit fly homolog of EIF4A2 is eIF4A, a negative regulator of decapentaplegic (dpp) signaling that regulates embryo patterning, eye and wing morphogenesis, and stem cell identity determination. Our loss-of-function (LOF) rescue assay demonstrated a pupal lethality phenotype induced by loss of eIF4A, which was fully rescued with human EIF4A2 wild-type (WT) cDNA expression. In comparison, the EIF4A2 variant cDNAs failed or incompletely rescued the lethality. Overall, our findings reveal that EIF4A2 variants cause a genetic neurodevelopmental syndrome with both LOF and gain of function as underlying mechanisms.


Assuntos
Proteínas de Drosophila , Epilepsia , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Animais , Humanos , Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Epilepsia/genética , Fator de Iniciação 4A em Eucariotos/genética , Deficiência Intelectual/genética , Hipotonia Muscular/genética , Transtornos do Neurodesenvolvimento/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
2.
Am J Hum Genet ; 110(5): 790-808, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37071997

RESUMO

SRSF1 (also known as ASF/SF2) is a non-small nuclear ribonucleoprotein (non-snRNP) that belongs to the arginine/serine (R/S) domain family. It recognizes and binds to mRNA, regulating both constitutive and alternative splicing. The complete loss of this proto-oncogene in mice is embryonically lethal. Through international data sharing, we identified 17 individuals (10 females and 7 males) with a neurodevelopmental disorder (NDD) with heterozygous germline SRSF1 variants, mostly de novo, including three frameshift variants, three nonsense variants, seven missense variants, and two microdeletions within region 17q22 encompassing SRSF1. Only in one family, the de novo origin could not be established. All individuals featured a recurrent phenotype including developmental delay and intellectual disability (DD/ID), hypotonia, neurobehavioral problems, with variable skeletal (66.7%) and cardiac (46%) anomalies. To investigate the functional consequences of SRSF1 variants, we performed in silico structural modeling, developed an in vivo splicing assay in Drosophila, and carried out episignature analysis in blood-derived DNA from affected individuals. We found that all loss-of-function and 5 out of 7 missense variants were pathogenic, leading to a loss of SRSF1 splicing activity in Drosophila, correlating with a detectable and specific DNA methylation episignature. In addition, our orthogonal in silico, in vivo, and epigenetics analyses enabled the separation of clearly pathogenic missense variants from those with uncertain significance. Overall, these results indicated that haploinsufficiency of SRSF1 is responsible for a syndromic NDD with ID due to a partial loss of SRSF1-mediated splicing activity.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Criança , Feminino , Masculino , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/complicações , Haploinsuficiência/genética , Deficiência Intelectual/patologia , Mutação de Sentido Incorreto/genética , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Humanos
3.
N Engl J Med ; 389(7): 620-631, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37585628

RESUMO

BACKGROUND: Patients with the Crigler-Najjar syndrome lack the enzyme uridine diphosphoglucuronate glucuronosyltransferase 1A1 (UGT1A1), the absence of which leads to severe unconjugated hyperbilirubinemia that can cause irreversible neurologic injury and death. Prolonged, daily phototherapy partially controls the jaundice, but the only definitive cure is liver transplantation. METHODS: We report the results of the dose-escalation portion of a phase 1-2 study evaluating the safety and efficacy of a single intravenous infusion of an adeno-associated virus serotype 8 vector encoding UGT1A1 in patients with the Crigler-Najjar syndrome that was being treated with phototherapy. Five patients received a single infusion of the gene construct (GNT0003): two received 2×1012 vector genomes (vg) per kilogram of body weight, and three received 5×1012 vg per kilogram. The primary end points were measures of safety and efficacy; efficacy was defined as a serum bilirubin level of 300 µmol per liter or lower measured at 17 weeks, 1 week after discontinuation of phototherapy. RESULTS: No serious adverse events were reported. The most common adverse events were headache and alterations in liver-enzyme levels. Alanine aminotransferase increased to levels above the upper limit of the normal range in four patients, a finding potentially related to an immune response against the infused vector; these patients were treated with a course of glucocorticoids. By week 16, serum bilirubin levels in patients who received the lower dose of GNT0003 exceeded 300 µmol per liter. The patients who received the higher dose had bilirubin levels below 300 µmol per liter in the absence of phototherapy at the end of follow-up (mean [±SD] baseline bilirubin level, 351±56 µmol per liter; mean level at the final follow-up visit [week 78 in two patients and week 80 in the other], 149±33 µmol per liter). CONCLUSIONS: No serious adverse events were reported in patients treated with the gene-therapy vector GNT0003 in this small study. Patients who received the higher dose had a decrease in bilirubin levels and were not receiving phototherapy at least 78 weeks after vector administration. (Funded by Genethon and others; ClinicalTrials.gov number, NCT03466463.).


Assuntos
Síndrome de Crigler-Najjar , Terapia Genética , Glucuronosiltransferase , Humanos , Administração Intravenosa , Bilirrubina/sangue , Síndrome de Crigler-Najjar/sangue , Síndrome de Crigler-Najjar/complicações , Síndrome de Crigler-Najjar/genética , Síndrome de Crigler-Najjar/terapia , Dependovirus , Terapia Genética/efeitos adversos , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Glucuronosiltransferase/administração & dosagem , Glucuronosiltransferase/genética , Hiperbilirrubinemia/sangue , Hiperbilirrubinemia/etiologia , Hiperbilirrubinemia/genética , Hiperbilirrubinemia/terapia , Transplante de Fígado , Fototerapia
4.
Am J Hum Genet ; 109(8): 1421-1435, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35830857

RESUMO

PPFIBP1 encodes for the liprin-ß1 protein, which has been shown to play a role in neuronal outgrowth and synapse formation in Drosophila melanogaster. By exome and genome sequencing, we detected nine ultra-rare homozygous loss-of-function variants in 16 individuals from 12 unrelated families. The individuals presented with moderate to profound developmental delay, often refractory early-onset epilepsy, and progressive microcephaly. Further common clinical findings included muscular hyper- and hypotonia, spasticity, failure to thrive and short stature, feeding difficulties, impaired vision, and congenital heart defects. Neuroimaging revealed abnormalities of brain morphology with leukoencephalopathy, ventriculomegaly, cortical abnormalities, and intracranial periventricular calcifications as major features. In a fetus with intracranial calcifications, we identified a rare homozygous missense variant that by structural analysis was predicted to disturb the topology of the SAM domain region that is essential for protein-protein interaction. For further insight into the effects of PPFIBP1 loss of function, we performed automated behavioral phenotyping of a Caenorhabditis elegans PPFIBP1/hlb-1 knockout model, which revealed defects in spontaneous and light-induced behavior and confirmed resistance to the acetylcholinesterase inhibitor aldicarb, suggesting a defect in the neuronal presynaptic zone. In conclusion, we establish bi-allelic loss-of-function variants in PPFIBP1 as a cause of an autosomal recessive severe neurodevelopmental disorder with early-onset epilepsy, microcephaly, and periventricular calcifications.


Assuntos
Epilepsia , Microcefalia , Malformações do Sistema Nervoso , Transtornos do Neurodesenvolvimento , Acetilcolinesterase/genética , Animais , Drosophila melanogaster/genética , Epilepsia/genética , Perda de Heterozigosidade , Microcefalia/genética , Transtornos do Neurodesenvolvimento/genética , Linhagem
5.
Mol Ther ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38850023

RESUMO

Lysosomal storage disorders (LSDs) are multisystemic progressive disorders caused by defects in proteins involved in lysosomal function. Different gene therapy strategies are under clinical investigation in several LSDs to overcome the limitations of available treatments. However, LSDs are slowly progressive diseases that require long-term studies to establish the efficacy of experimental treatments. Biomarkers can be reliable substitutes for clinical responses and improve the efficiency of clinical trials, especially when long-term disease interventions are evaluated. In this review, we summarize both available and future biomarkers for LSDs and discuss their strengths and weaknesses.

6.
J Lipid Res ; 65(3): 100517, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38342436

RESUMO

The last step of ex novo ceramide biosynthesis consists of the conversion of dihydroceramide into ceramide catalyzed by sphingolipid Δ4-desaturase DEGS1. DEGS1 variants were found to be responsible for heterogeneous clinical pictures belonging to the family of hypomyelinating leukodystrophies. To investigate the mechanisms making such variants pathogenic, we designed a procedure for the efficient detection of desaturase activity in vitro using LC-MS/MS and prepared a suitable cell model knocking out DEGS1 in HEK-293T cells through CRISPR-Cas9 genome editing (KO-DES-HEK). Transfecting KO-DES-HEK cells with DEGS1 variants, we found that their transcripts were all overexpressed as much as the WT transcripts, while the levels of cognate protein were 40%-80% lower. In vitro desaturase activity was lost by many variants except L175Q and N255S, which maintain a catalytic efficiency close to 12% of the WT enzyme. Metabolic labeling of KO-DES-HEK with deuterated palmitate followed by LC-MS/MS analysis of the formed sphingolipids revealed that the ceramide/dihydroceramide and sphingomyelin/dihydrosphingomyelin ratios were low and could be reverted by the overexpression of WT DEGS1 as well as of L175Q and N255S variants, but not by the overexpression of all other variants. Similar analyses performed on fibroblasts from a patient heterozygous for the N255S variant showed very low variant DEGS1 levels and a low ratio between the same unsaturated and saturated sphingolipids formed upon metabolic labeling, notwithstanding the residual activity measured at high substrate and homogenate protein concentrations. We conclude that loss of function and reduced protein levels are both relevant in disease pathogenesis.


Assuntos
Ceramidas , Oxirredutases , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida , Ceramidas/metabolismo , Esfingolipídeos/genética , Esfingolipídeos/metabolismo , Ácidos Graxos Dessaturases/genética
7.
Am J Med Genet C Semin Med Genet ; : e32089, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884529

RESUMO

Blepharophimosis with intellectual disability (BIS) is a recently recognized disorder distinct from Nicolaides-Baraister syndrome that presents with distinct facial features of blepharophimosis, developmental delay, and intellectual disability. BIS is caused by pathogenic variants in SMARCA2, that encodes the catalytic subunit of the superfamily II helicase group of the BRG1 and BRM-associated factors (BAF) forming the BAF complex, a chromatin remodeling complex involved in transcriptional regulation. Individuals bearing variants within the bipartite nuclear localization (BNL) signal domain of ADNP present with the neurodevelopmental disorder known as Helsmoortel-Van Der Aa Syndrome (HVDAS). Distinct DNA methylation profiles referred to as episignatures have been reported in HVDAS and BAF complex disorders. Due to molecular interactions between ADNP and BAF complex, and an overlapping craniofacial phenotype with narrowing of the palpebral fissures in a subset of patients with HVDAS and BIS, we hypothesized the possibility of a common phenotype-specific episignature. A distinct episignature was shared by 15 individuals with BIS-causing SMARCA2 pathogenic variants and 12 individuals with class II HVDAS caused by truncating pathogenic ADNP variants. This represents first evidence of a sensitive phenotype-specific episignature biomarker shared across distinct genetic conditions that also exhibit unique gene-specific episignatures.

8.
Hum Mol Genet ; 31(24): 4131-4142, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-35861666

RESUMO

KBG syndrome (KBGS) is characterized by distinctive facial gestalt, short stature and variable clinical findings. With ageing, some features become more recognizable, allowing a differential diagnosis. We aimed to better characterize natural history of KBGS. In the context of a European collaborative study, we collected the largest cohort of KBGS patients (49). A combined array- based Comparative Genomic Hybridization and next generation sequencing (NGS) approach investigated both genomic Copy Number Variants and SNVs. Intellectual disability (ID) (82%) ranged from mild to moderate with severe ID identified in two patients. Epilepsy was present in 26.5%. Short stature was consistent over time, while occipitofrontal circumference (median value: -0.88 SD at birth) normalized over years. Cerebral anomalies, were identified in 56% of patients and thus represented the second most relevant clinical feature reinforcing clinical suspicion in the paediatric age when short stature and vertebral/dental anomalies are vague. Macrodontia, oligodontia and dental agenesis (53%) were almost as frequent as skeletal anomalies, such as brachydactyly, short fifth finger, fifth finger clinodactyly, pectus excavatum/carinatum, delayed bone age. In 28.5% of individuals, prenatal ultrasound anomalies were reported. Except for three splicing variants, leading to a premature termination, variants were almost all frameshift. Our results, broadening the spectrum of KBGS phenotype progression, provide useful tools to facilitate differential diagnosis and improve clinical management. We suggest to consider a wider range of dental anomalies before excluding diagnosis and to perform a careful odontoiatric/ear-nose-throat (ENT) evaluation in order to look for even submucosal palate cleft given the high percentage of palate abnormalities. NGS approaches, following evidence of antenatal ultrasound anomalies, should include ANKRD11.


Assuntos
Anormalidades Múltiplas , Doenças do Desenvolvimento Ósseo , Nanismo , Deficiência Intelectual , Anormalidades Dentárias , Gravidez , Feminino , Humanos , Fácies , Anormalidades Dentárias/genética , Doenças do Desenvolvimento Ósseo/genética , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/diagnóstico , Deficiência Intelectual/genética , Deficiência Intelectual/diagnóstico , Hibridização Genômica Comparativa , Proteínas Repressoras/genética , Fenótipo , Nanismo/genética , População Europeia
9.
Am J Hum Genet ; 108(1): 100-114, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33352116

RESUMO

Chiari I malformation (CM1), the displacement of the cerebellum through the foramen magnum into the spinal canal, is one of the most common pediatric neurological conditions. Individuals with CM1 can present with neurological symptoms, including severe headaches and sensory or motor deficits, often as a consequence of brainstem compression or syringomyelia (SM). We conducted whole-exome sequencing (WES) on 668 CM1 probands and 232 family members and performed gene-burden and de novo enrichment analyses. A significant enrichment of rare and de novo non-synonymous variants in chromodomain (CHD) genes was observed among individuals with CM1 (combined p = 2.4 × 10-10), including 3 de novo loss-of-function variants in CHD8 (LOF enrichment p = 1.9 × 10-10) and a significant burden of rare transmitted variants in CHD3 (p = 1.8 × 10-6). Overall, individuals with CM1 were found to have significantly increased head circumference (p = 2.6 × 10-9), with many harboring CHD rare variants having macrocephaly. Finally, haploinsufficiency for chd8 in zebrafish led to macrocephaly and posterior hindbrain displacement reminiscent of CM1. These results implicate chromodomain genes and excessive brain growth in CM1 pathogenesis.


Assuntos
Malformação de Arnold-Chiari/genética , Proteínas de Ligação a DNA/genética , Polimorfismo de Nucleotídeo Único/genética , Adulto , Animais , Malformação de Arnold-Chiari/patologia , Encéfalo/patologia , Estudos de Casos e Controles , Feminino , Haploinsuficiência/genética , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Siringomielia/genética , Sequenciamento do Exoma/métodos , Peixe-Zebra/genética
10.
Am J Hum Genet ; 108(6): 1138-1150, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-33909992

RESUMO

ANKRD17 is an ankyrin repeat-containing protein thought to play a role in cell cycle progression, whose ortholog in Drosophila functions in the Hippo pathway as a co-factor of Yorkie. Here, we delineate a neurodevelopmental disorder caused by de novo heterozygous ANKRD17 variants. The mutational spectrum of this cohort of 34 individuals from 32 families is highly suggestive of haploinsufficiency as the underlying mechanism of disease, with 21 truncating or essential splice site variants, 9 missense variants, 1 in-frame insertion-deletion, and 1 microdeletion (1.16 Mb). Consequently, our data indicate that loss of ANKRD17 is likely the main cause of phenotypes previously associated with large multi-gene chromosomal aberrations of the 4q13.3 region. Protein modeling suggests that most of the missense variants disrupt the stability of the ankyrin repeats through alteration of core structural residues. The major phenotypic characteristic of our cohort is a variable degree of developmental delay/intellectual disability, particularly affecting speech, while additional features include growth failure, feeding difficulties, non-specific MRI abnormalities, epilepsy and/or abnormal EEG, predisposition to recurrent infections (mostly bacterial), ophthalmological abnormalities, gait/balance disturbance, and joint hypermobility. Moreover, many individuals shared similar dysmorphic facial features. Analysis of single-cell RNA-seq data from the developing human telencephalon indicated ANKRD17 expression at multiple stages of neurogenesis, adding further evidence to the assertion that damaging ANKRD17 variants cause a neurodevelopmental disorder.


Assuntos
Anormalidades Craniofaciais/etiologia , Heterozigoto , Deficiência Intelectual/etiologia , Transtornos do Desenvolvimento da Linguagem/etiologia , Mutação com Perda de Função , Proteínas de Ligação a RNA/genética , Adolescente , Adulto , Criança , Pré-Escolar , Anormalidades Craniofaciais/patologia , Feminino , Haploinsuficiência , Humanos , Lactente , Deficiência Intelectual/patologia , Transtornos do Desenvolvimento da Linguagem/patologia , Masculino , Linhagem , Fenótipo , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Síndrome , Adulto Jovem
11.
Am J Med Genet A ; 194(5): e63517, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38149346

RESUMO

Mucopolysaccharidosis type IIIA (MPS IIIA or Sanfilippo syndrome type A) is an autosomal recessive lysosomal storage disorder caused by pathogenic variants in the SGSH gene encoding N-sulfoglucosamine sulfohydrolase, an enzyme involved in the degradation of heparan sulfate. MPS IIIA is typically characterized by neurocognitive decline and hepatosplenomegaly with childhood onset. Here, we report on a 53-year-old male subject initially diagnosed with Usher syndrome for the concurrence of retinitis pigmentosa and sensorineural hearing loss. Clinical exome sequencing identified biallelic missense variants in SGSH, and biochemical assays showed complete deficiency of sulfamidase activity and increased urinary glycosaminoglycan excretion. Reverse phenotyping revealed left ventricle pseudo-hypertrophy, hepatosplenomegaly, bilateral deep white matter hyperintensities upon brain MRI, and decreased cortical metabolic activity by PET-CT. On neuropsychological testing, the proband presented only partial and isolated verbal memory deficits. This case illustrates the power of unbiased, comprehensive genetic testing for the diagnosis of challenging mild or atypical forms of MPS IIIA.


Assuntos
Mucopolissacaridose III , Síndromes de Usher , Masculino , Humanos , Criança , Pessoa de Meia-Idade , Mucopolissacaridose III/diagnóstico , Mucopolissacaridose III/genética , Hidrolases/genética , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Síndromes de Usher/diagnóstico , Síndromes de Usher/genética , Testes Genéticos , Hepatomegalia/genética
12.
Am J Med Genet A ; : e63713, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38924631

RESUMO

Haploinsufficiency of FOXP1 gene is responsible for a neurodevelopmental disorder presenting with intellectual disability (ID), autism spectrum disorder (ASD), hypotonia, mild dysmorphic features, and multiple congenital anomalies. Joint contractures are not listed as a major feature of FOXP1-related disorder. We report five unrelated individuals, each harboring likely gene disruptive de novo FOXP1 variants or whole gene microdeletion, who showed multiple joint contractures affecting at least two proximal and/or distal joints. Consistent with the phenotype of FOXP1-related disorder, all five patients showed developmental delay with moderate-to-severe speech delay, ID, ASD, and facial dysmorphic features. FOXP1 is implicated in neuronal differentiation and in organizing motor axon projections, thus providing a potential developmental basis for the joint contractures. The combination of joint contractures and neurodevelopmental disorders supports the clinical suspicion of FOXP1-related phenotype.

13.
J Inherit Metab Dis ; 47(1): 135-144, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37204267

RESUMO

Current specific treatments for mucopolysaccharidoses (MPSs) include enzyme replacement therapy (ERT) and hematopoietic stem cell transplantation (HSCT). Both treatments are hampered by several limitations, including lack of efficacy on brain and skeletal manifestations, need for lifelong injections, and high costs. Therefore, more effective treatments are needed. Gene therapy in MPSs is aimed at obtaining high levels of the therapeutic enzyme in multiple tissues either by engrafted gene-modified hematopoietic stem progenitor cells (ex vivo) or by direct infusion of a viral vector expressing the therapeutic gene (in vivo). This review focuses on the most recent clinical progress in gene therapies for MPSs. The various gene therapy approaches with their strengths and limitations are discussed.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Mucopolissacaridoses , Humanos , Mucopolissacaridoses/genética , Mucopolissacaridoses/terapia , Encéfalo , Terapia Genética , Terapia de Reposição de Enzimas
14.
J Inherit Metab Dis ; 47(1): 9-21, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38171926

RESUMO

Gene therapy clinical trials are rapidly expanding for inherited metabolic liver diseases whilst two gene therapy products have now been approved for liver based monogenic disorders. Liver-directed gene therapy has recently become an option for treatment of haemophilias and is likely to become one of the favoured therapeutic strategies for inherited metabolic liver diseases in the near future. In this review, we present the different gene therapy vectors and strategies for liver-targeting, including gene editing. We highlight the current development of viral and nonviral gene therapy for a number of inherited metabolic liver diseases including urea cycle defects, organic acidaemias, Crigler-Najjar disease, Wilson disease, glycogen storage disease Type Ia, phenylketonuria and maple syrup urine disease. We describe the main limitations and open questions for further gene therapy development: immunogenicity, inflammatory response, genotoxicity, gene therapy administration in a fibrotic liver. The follow-up of a constantly growing number of gene therapy treated patients allows better understanding of its benefits and limitations and provides strategies to design safer and more efficacious treatments. Undoubtedly, liver-targeting gene therapy offers a promising avenue for innovative therapies with an unprecedented potential to address the unmet needs of patients suffering from inherited metabolic diseases.


Assuntos
Hemofilia A , Hepatopatias , Doenças Metabólicas , Humanos , Hepatopatias/genética , Hepatopatias/terapia , Hepatopatias/metabolismo , Terapia Genética , Doenças Metabólicas/genética , Doenças Metabólicas/terapia , Doenças Metabólicas/metabolismo , Hemofilia A/genética
15.
Brain ; 146(4): 1357-1372, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36074901

RESUMO

The vacuolar H+-ATPase is an enzymatic complex that functions in an ATP-dependent manner to pump protons across membranes and acidify organelles, thereby creating the proton/pH gradient required for membrane trafficking by several different types of transporters. We describe heterozygous point variants in ATP6V0C, encoding the c-subunit in the membrane bound integral domain of the vacuolar H+-ATPase, in 27 patients with neurodevelopmental abnormalities with or without epilepsy. Corpus callosum hypoplasia and cardiac abnormalities were also present in some patients. In silico modelling suggested that the patient variants interfere with the interactions between the ATP6V0C and ATP6V0A subunits during ATP hydrolysis. Consistent with decreased vacuolar H+-ATPase activity, functional analyses conducted in Saccharomyces cerevisiae revealed reduced LysoSensor fluorescence and reduced growth in media containing varying concentrations of CaCl2. Knockdown of ATP6V0C in Drosophila resulted in increased duration of seizure-like behaviour, and the expression of selected patient variants in Caenorhabditis elegans led to reduced growth, motor dysfunction and reduced lifespan. In summary, this study establishes ATP6V0C as an important disease gene, describes the clinical features of the associated neurodevelopmental disorder and provides insight into disease mechanisms.


Assuntos
Epilepsia , ATPases Vacuolares Próton-Translocadoras , Humanos , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Epilepsia/genética , Trifosfato de Adenosina
16.
Mol Ther ; 31(9): 2651-2661, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37394797

RESUMO

Mutant Z alpha-1 antitrypsin (ATZ) accumulates in globules in the liver and is the prototype of proteotoxic hepatic disease. Therapeutic strategies aiming at clearance of polymeric ATZ are needed. Transient receptor potential mucolipin-1 (TRPML1) is a lysosomal Ca2+ channel that maintains lysosomal homeostasis. In this study, we show that by increasing lysosomal exocytosis, TRPML1 gene transfer or small-molecule-mediated activation of TRPML1 reduces hepatic ATZ globules and fibrosis in PiZ transgenic mice that express the human ATZ. ATZ globule clearance induced by TRPML1 occurred without increase in autophagy or nuclear translocation of TFEB. Our results show that targeting TRPML1 and lysosomal exocytosis is a novel approach for treatment of the liver disease due to ATZ and potentially other diseases due to proteotoxic liver storage.


Assuntos
Hepatopatias , Canais de Potencial de Receptor Transitório , alfa 1-Antitripsina , Animais , Humanos , Camundongos , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo , Hepatopatias/metabolismo , Lisossomos/metabolismo , Camundongos Transgênicos , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo
17.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33649241

RESUMO

α1-Antitrypsin (AAT) deficiency is a common genetic disease presenting with lung and liver diseases. AAT deficiency results from pathogenic variants in the SERPINA1 gene encoding AAT and the common mutant Z allele of SERPINA1 encodes for Z α1-antitrypsin (ATZ), a protein forming hepatotoxic polymers retained in the endoplasmic reticulum of hepatocytes. PiZ mice express the human ATZ and are a valuable model to investigate the human liver disease of AAT deficiency. In this study, we investigated differential expression of microRNAs (miRNAs) between PiZ and control mice and found that miR-34b/c was up-regulated and its levels correlated with intrahepatic ATZ. Furthermore, in PiZ mouse livers, we found that Forkhead Box O3 (FOXO3) driving microRNA-34b/c (miR-34b/c) expression was activated and miR-34b/c expression was dependent upon c-Jun N-terminal kinase (JNK) phosphorylation on Ser574 Deletion of miR-34b/c in PiZ mice resulted in early development of liver fibrosis and increased signaling of platelet-derived growth factor (PDGF), a target of miR-34b/c. Activation of FOXO3 and increased miR-34c were confirmed in livers of humans with AAT deficiency. In addition, JNK-activated FOXO3 and miR-34b/c up-regulation were detected in several mouse models of liver fibrosis. This study reveals a pathway involved in liver fibrosis and potentially implicated in both genetic and acquired causes of hepatic fibrosis.


Assuntos
Proteína Forkhead Box O3/metabolismo , Cirrose Hepática , MAP Quinase Quinase 4/metabolismo , Regulação para Cima , Animais , Modelos Animais de Doenças , Proteína Forkhead Box O3/genética , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/prevenção & controle , MAP Quinase Quinase 4/genética , Masculino , Camundongos , Camundongos Knockout , MicroRNAs/biossíntese , MicroRNAs/genética , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo
18.
EMBO J ; 38(12)2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31126958

RESUMO

Autophagy and energy metabolism are known to follow a circadian pattern. However, it is unclear whether autophagy and the circadian clock are coordinated by common control mechanisms. Here, we show that the oscillation of autophagy genes is dependent on the nutrient-sensitive activation of TFEB and TFE3, key regulators of autophagy, lysosomal biogenesis, and cell homeostasis. TFEB and TFE3 display a circadian activation over the 24-h cycle and are responsible for the rhythmic induction of genes involved in autophagy during the light phase. Genetic ablation of TFEB and TFE3 in mice results in deregulated autophagy over the diurnal cycle and altered gene expression causing abnormal circadian wheel-running behavior. In addition, TFEB and TFE3 directly regulate the expression of Rev-erbα (Nr1d1), a transcriptional repressor component of the core clock machinery also involved in the regulation of whole-body metabolism and autophagy. Comparative analysis of the cistromes of TFEB/TFE3 and REV-ERBα showed an extensive overlap of their binding sites, particularly in genes involved in autophagy and metabolic functions. These data reveal a direct link between nutrient and clock-dependent regulation of gene expression shedding a new light on the crosstalk between autophagy, metabolism, and circadian cycles.


Assuntos
Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/fisiologia , Relógios Circadianos , Metabolismo Energético , Nutrientes/fisiologia , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Sítios de Ligação , Células Cultivadas , Relógios Circadianos/efeitos dos fármacos , Relógios Circadianos/genética , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/fisiologia , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Regulação da Expressão Gênica , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/fisiologia , Nutrientes/farmacologia , Fatores de Transcrição/efeitos dos fármacos , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia
19.
Genet Med ; 25(8): 100871, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37120726

RESUMO

PURPOSE: HNRNPU haploinsufficiency is associated with developmental and epileptic encephalopathy 54. This neurodevelopmental disorder is characterized by developmental delay, intellectual disability, speech impairment, and early-onset epilepsy. We performed genome-wide DNA methylation (DNAm) analysis in a cohort of individuals to develop a diagnostic biomarker and gain functional insights into the molecular pathophysiology of HNRNPU-related disorder. METHODS: DNAm profiles of individuals carrying pathogenic HNRNPU variants, identified through an international multicenter collaboration, were assessed using Infinium Methylation EPIC arrays. Statistical and functional correlation analyses were performed comparing the HNRNPU cohort with 56 previously reported DNAm episignatures. RESULTS: A robust and reproducible DNAm episignature and global DNAm profile were identified. Correlation analysis identified partial overlap and similarity of the global HNRNPU DNAm profile to several other rare disorders. CONCLUSION: This study demonstrates new evidence of a specific and sensitive DNAm episignature associated with pathogenic heterozygous HNRNPU variants, establishing its utility as a clinical biomarker for the expansion of the EpiSign diagnostic test.


Assuntos
Metilação de DNA , Transtornos do Neurodesenvolvimento , Humanos , Metilação de DNA/genética , Epigenômica , Fenótipo , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Biomarcadores
20.
Clin Genet ; 104(2): 186-197, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37165752

RESUMO

POU3F3 variants cause developmental delay, behavioral problems, hypotonia and dysmorphic features. We investigated the phenotypic and genetic landscape, and genotype-phenotype correlations in individuals with POU3F3-related disorders. We recruited unpublished individuals with POU3F3 variants through international collaborations and obtained updated clinical data on previously published individuals. Trio exome sequencing or single exome sequencing followed by segregation analysis were performed in the novel cohort. Functional effects of missense variants were investigated with 3D protein modeling. We included 28 individuals (5 previously published) from 26 families carrying POU3F3 variants; 23 de novo and one inherited from an affected parent. Median age at study inclusion was 7.4 years. All had developmental delay mainly affecting speech, behavioral difficulties, psychiatric comorbidities and dysmorphisms. Additional features included gastrointestinal comorbidities, hearing loss, ophthalmological anomalies, epilepsy, sleep disturbances and joint hypermobility. Autism, hearing and eye comorbidities, dysmorphisms were more common in individuals with truncating variants, whereas epilepsy was only associated with missense variants. In silico structural modeling predicted that all (likely) pathogenic variants destabilize the DNA-binding region of POU3F3. Our study refined the phenotypic and genetic landscape of POU3F3-related disorders, it reports the functional properties of the identified pathogenic variants, and delineates some genotype-phenotype correlations.


Assuntos
Transtorno Autístico , Epilepsia , Deficiência Intelectual , Humanos , Criança , Deficiência Intelectual/genética , Transtorno Autístico/genética , Fenótipo , Epilepsia/genética , Mutação de Sentido Incorreto/genética , Deficiências do Desenvolvimento/genética , Fatores do Domínio POU/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA