Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Magn Reson Med ; 89(2): 710-720, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36128887

RESUMO

PURPOSE: In current intraoperative MRI (IMRI) methods, an iterative approach is used to aim trajectory guides at intracerebral targets: image MR-visible features, determine current aim by fitting model to image, manipulate device, repeat. Infrequent updates are produced by such methods, compared to rapid optically tracked stereotaxy used in the operating room. Our goal was to develop a real-time interactive IMRI method for aiming. METHODS: The current trajectory was computed from two points along the guide's central axis, rather than by imaging the entire device. These points were determined by correlating one-dimensional spokes from a radial sequence with the known cross-sectional projection of the guide. The real-time platform RTHawk was utilized to control MR sequences and data acquisition. On-screen updates were viewed by the operator while simultaneously manipulating the guide to align it with the planned trajectory. Accuracy was quantitated in a phantom, and in vivo validation was demonstrated in nonhuman primates undergoing preclinical gene ( n = 5 $$ n=5 $$ ) and cell ( n = 4 $$ n=4 $$ ) delivery surgeries. RESULTS: Updates were produced at 5 Hz In 10 phantom experiments at a depth of 48 mm, the cannula tip was placed with radial error of (min, mean, max) = (0.16, 0.29, 0.68) mm. Successful in vivo delivery of payloads to all 14 targets was demonstrated across nine surgeries with depths of (min, mean, max) = (33.3, 37.9, 42.5) mm. CONCLUSION: A real-time interactive update rate was achieved, reducing operator fatigue without compromising accuracy. Qualitative interpretation of images during aiming was rendered unnecessary by objectively computing device alignment.


Assuntos
Neurocirurgia , Animais , Estudos Transversais , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Imageamento Tridimensional
2.
Transpl Int ; 36: 11279, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426429

RESUMO

Development of a post-transplant kidney transplant tolerance induction protocol involving a novel total lymphoid irradiation (TLI) conditioning method in a rhesus macaque model is described. We examined the feasibility of acheiving tolerance to MHC 1-haplotype matched kidney transplants by establishing a mixed chimeric state with infusion of donor hematopoietic cells (HC) using TomoTherapy TLI. The chimeric state was hypothesized to permit the elimination of all immunosuppressive (IS) medications while preserving allograft function long-term without development of graft-versus-host-disease (GVHD) or rejection. An experimental group of 11 renal transplant recipients received the tolerance induction protocol and outcomes were compared to a control group (n = 7) that received the same conditioning but without donor HC infusion. Development of mixed chimerism and operational tolerance was accomplished in two recipients in the experimental group. Both recipients were withdrawn from all IS and continued to maintain normal renal allograft function for 4 years without rejection or GVHD. None of the animals in the control group achieved tolerance when IS was eliminated. This novel experimental model demonstrated the feasibility for inducing of long-term operational tolerance when mixed chimerism is achieved using a TLI post-transplant conditioning protocol in 1-haplotype matched non-human primate recipients of combined kidney and HC transplantation.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Transplante de Rim , Radioterapia de Intensidade Modulada , Animais , Macaca mulatta , Irradiação Linfática , Tolerância Imunológica , Tolerância ao Transplante , Condicionamento Pré-Transplante/métodos , Rim , Quimeras de Transplante
3.
Neurobiol Dis ; 171: 105814, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35817217

RESUMO

Barbiturates and benzodiazepines are GABAA-receptor agonists and potent antiseizure medications. We reported that exposure of neonatal macaques to combination of phenobarbital and midazolam (Pb/M) for 24 h, at clinically relevant doses and plasma levels, causes widespread apoptosis affecting neurons and oligodendrocytes. Notably, the extent of injury was markedly more severe compared to shorter (8 h) exposure to these drugs. We also reported that, in the infant macaque, mild hypothermia ameliorates the apoptosis response to the anesthetic sevoflurane. These findings prompted us explore whether mild hypothermia might protect infant nonhuman primates from neuro- and gliotoxicity of Pb/M. Since human infants with seizures may receive combinations of benzodiazepines and barbiturates for days, we opted for 24 h treatment with Pb/M. Neonatal rhesus monkeys received phenobarbital intravenously, followed by midazolam infusion over 24 h under normothermia (T > 36.5 °C-37.5 °C; n = 4) or mild hypothermia (T = 35 °C-36.5 °C; n = 5). Medication doses and blood levels measured were comparable to those in human infants. Animals were euthanized at 36 h and brains examined immunohistochemically and stereologically. Treatment was well tolerated. Extensive degeneration of neurons and oligodendrocytes was seen at 36 h in both groups within neocortex, basal ganglia, hippocampus and brainstem. Mild hypothermia over 36 h (maintained until terminal perfusion) conferred no protection against the neurotoxic and gliotoxic effects of Pb/M. This is in marked contrast to our previous findings that mild hypothermia is protective in the context of a 5 h-long exposure to sevoflurane in infant macaques. These findings demonstrate that brain injury caused by prolonged exposure to Pb/M in the neonatal primate cannot be ameliorated by mild hypothermia.


Assuntos
Lesões Encefálicas , Hipotermia Induzida , Hipotermia , Animais , Encéfalo , Lesões Encefálicas/induzido quimicamente , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/prevenção & controle , Humanos , Lactente , Recém-Nascido , Chumbo/farmacologia , Macaca mulatta , Midazolam/farmacologia , Fenobarbital/toxicidade , Sevoflurano/farmacologia
4.
Biol Reprod ; 107(6): 1517-1527, 2022 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-36018823

RESUMO

Identification of placental dysfunction in early pregnancy with noninvasive imaging could be a valuable tool for assessing maternal and fetal risk. Dynamic contrast enhanced (DCE) magnetic resonance imaging (MRI) can be a powerful tool for interrogating placenta health. After inoculation with Zika virus or sham inoculation at gestation age (GA) 45 or 55 days, animals were imaged up to three times at GA65, GA100, and GA145. DCE MRI images were acquired at all imaging sessions using ferumoxytol, an iron nanoparticle-based contrast agent, and analyzed for placental intervillous blood flow, number of perfusion domains, and perfusion domain volume. Cesarean section was performed at GA155, and the placenta was photographed and dissected for histopathology. Photographs were used to align cotyledons with estimated perfusion domains from MRI, allowing comparison of estimated cotyledon volume to pathology. Monkeys were separated into high and low pathology groups based on the average number of pathologies present in the placenta. Perfusion domain flow, volume, and number increased through gestation, and total blood flow increased with gestation for both low pathology and high pathology groups. A statistically significant decrease in perfusion domain volume associated with pathology was detected at all gestational ages. Individual perfusion domain flow comparisons demonstrated a statistically significant decrease with pathology at GA100 and GA145, but not GA65. Since ferumoxytol is currently used to treat anemia during human pregnancy and as an off-label MRI contrast agent, future transition of this work to human pregnancy may be possible.


Assuntos
Infecção por Zika virus , Zika virus , Animais , Gravidez , Feminino , Humanos , Lactente , Placenta/irrigação sanguínea , Óxido Ferroso-Férrico , Macaca mulatta , Meios de Contraste , Cotilédone , Cesárea , Imageamento por Ressonância Magnética/métodos , Perfusão , Infecção por Zika virus/patologia
5.
Sensors (Basel) ; 22(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36366153

RESUMO

In this study, a traumatic spinal cord injury (TSCI) classification system is proposed using a convolutional neural network (CNN) technique with automatically learned features from electromyography (EMG) signals for a non-human primate (NHP) model. A comparison between the proposed classification system and a classical classification method (k-nearest neighbors, kNN) is also presented. Developing such an NHP model with a suitable assessment tool (i.e., classifier) is a crucial step in detecting the effect of TSCI using EMG, which is expected to be essential in the evaluation of the efficacy of new TSCI treatments. Intramuscular EMG data were collected from an agonist/antagonist tail muscle pair for the pre- and post-spinal cord lesion from five Macaca fasicularis monkeys. The proposed classifier is based on a CNN using filtered segmented EMG signals from the pre- and post-lesion periods as inputs, while the kNN is designed using four hand-crafted EMG features. The results suggest that the CNN provides a promising classification technique for TSCI, compared to conventional machine learning classification. The kNN with hand-crafted EMG features classified the pre- and post-lesion EMG data with an F-measure of 89.7% and 92.7% for the left- and right-side muscles, respectively, while the CNN with the EMG segments classified the data with an F-measure of 89.8% and 96.9% for the left- and right-side muscles, respectively. Finally, the proposed deep learning classification model (CNN), with its learning ability of high-level features using EMG segments as inputs, shows high potential and promising results for use as a TSCI classification system. Future studies can confirm this finding by considering more subjects.


Assuntos
Aprendizado Profundo , Traumatismos da Medula Espinal , Animais , Eletromiografia/métodos , Redes Neurais de Computação , Aprendizado de Máquina , Traumatismos da Medula Espinal/diagnóstico , Macaca fascicularis
6.
Neurobiol Dis ; 149: 105245, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33385515

RESUMO

Barbiturates and benzodiazepines are potent GABAA receptor agonists and strong anticonvulsants. In the developing brain they can cause neuronal and oligodendroglia apoptosis, impair synaptogenesis, inhibit neurogenesis and trigger long-term neurocognitive sequelae. In humans, the vulnerable period is projected to extend from the third trimester of pregnancy to the third year of life. Infants with seizures and epilepsies may receive barbiturates, benzodiazepines and their combinations for days, months or years. How exposure duration affects neuropathological sequelae is unknown. Here we investigated toxicity of phenobarbital/midazolam (Pb/M) combination in the developing nonhuman primate brain. Neonatal rhesus monkeys received phenobarbital intravenously, followed by infusion of midazolam over 5 (n = 4) or 24 h (n = 4). Animals were euthanized at 8 or 36 h and brains examined immunohistochemically and stereologically. Treatment was well tolerated, physiological parameters remained at optimal levels. Compared to naïve controls, Pb/M exposed brains displayed widespread apoptosis affecting neurons and oligodendrocytes. Pattern and severity of cell death differed depending on treatment-duration, with more extensive neurodegeneration following longer exposure. At 36 h, areas of the brain not affected at 8 h displayed neuronal apoptosis, while oligodendroglia death was most prominent at 8 h. A notable feature at 36 h was degeneration of neuronal tracts and trans-neuronal death of neurons, presumably following their disconnection from degenerated presynaptic partners. These findings demonstrate that brain toxicity of Pb/M in the neonatal primate brain becomes more severe with longer exposures and expands trans-synaptically. Impact of these sequelae on neurocognitive outcomes and the brain connectome will need to be explored.


Assuntos
Anticonvulsivantes/administração & dosagem , Anticonvulsivantes/toxicidade , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Animais , Animais Recém-Nascidos , Esquema de Medicação , Macaca mulatta
7.
Am J Transplant ; 20(6): 1513-1526, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31922336

RESUMO

Delayed graft function (DGF) in renal transplant is associated with reduced graft survival and increased immunogenicity. The complement-driven inflammatory response after brain death (BD) and posttransplant reperfusion injury play significant roles in the pathogenesis of DGF. In a nonhuman primate model, we tested complement-blockade in BD donors to prevent DGF and improve graft survival. BD donors were maintained for 20 hours; kidneys were procured and stored at 4°C for 43-48 hours prior to implantation into ABO-compatible, nonsensitized, MHC-mismatched recipients. Animals were divided into 3 donor-treatment groups: G1 - vehicle, G2 - rhC1INH+heparin, and G3 - heparin. G2 donors showed significant reduction in classical complement pathway activation and decreased levels of tumor necrosis factor α and monocyte chemoattractant protein 1. DGF was diagnosed in 4/6 (67%) G1 recipients, 3/3 (100%) G3 recipients, and 0/6 (0%) G2 recipients (P = .008). In addition, G2 recipients showed superior renal function, reduced sC5b-9, and reduced urinary neutrophil gelatinase-associated lipocalin in the first week posttransplant. We observed no differences in incidence or severity of graft rejection between groups. Collectively, the data indicate that donor-management targeting complement activation prevents the development of DGF. Our results suggest a pivotal role for complement activation in BD-induced renal injury and postulate complement blockade as a promising strategy for the prevention of DGF after transplantation.


Assuntos
Transplante de Rim , Animais , Morte Encefálica , Função Retardada do Enxerto/etiologia , Função Retardada do Enxerto/prevenção & controle , Sobrevivência de Enxerto , Humanos , Transplante de Rim/efeitos adversos , Primatas , Fatores de Risco , Doadores de Tecidos
8.
Biol Reprod ; 102(2): 434-444, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31511859

RESUMO

Ferumoxytol is a superparamagnetic iron oxide nanoparticle used off-label as an intravascular magnetic resonance imaging (MRI) contrast agent. Additionally, ferumoxytol-uptake by macrophages facilitates detection of inflammatory sites by MRI through ferumoxytol-induced image contrast changes. Therefore, ferumoxytol-enhanced MRI holds great potential for assessing vascular function and inflammatory response, critical to determine placental health in pregnancy. This study sought to assess the fetoplacental unit and selected maternal tissues, pregnancy outcomes, and fetal well-being after ferumoxytol administration. In initial developmental studies, seven pregnant rhesus macaques were imaged with or without ferumoxytol administration. Pregnancies went to term with vaginal delivery and infants showed normal growth rates compared to control animals born the same year that did not undergo MRI. To determine the impact of ferumoxytol on the maternal-fetal interface (MFI), fetal well-being, and pregnancy outcome, four pregnant rhesus macaques at ~100 gestational day underwent MRI before and after ferumoxytol administration. Collection of the fetoplacental unit and selected maternal tissues was performed 2-3 days following ferumoxytol administration. A control group that did not receive ferumoxytol or MRI was used for comparison. Iron levels in fetal and MFI tissues did not differ between groups, and there was no significant difference in tissue histopathology with or without exposure to ferumoxytol, and no effect on placental hormone secretion. Together, these results suggest that the use of ferumoxytol and MRI in pregnant rhesus macaques does not negatively impact the MFI and can be a valuable experimental tool in research with this important animal model.


Assuntos
Meios de Contraste/administração & dosagem , Endométrio/diagnóstico por imagem , Óxido Ferroso-Férrico/administração & dosagem , Desenvolvimento Fetal/efeitos dos fármacos , Imageamento por Ressonância Magnética/métodos , Placenta/diagnóstico por imagem , Animais , Endométrio/efeitos dos fármacos , Feminino , Macaca mulatta , Placenta/efeitos dos fármacos , Gravidez
9.
Neurobiol Dis ; 130: 104489, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31175984

RESUMO

Sedatives and anesthetics can injure the developing brain. They cause apoptosis of neurons and oligodendrocytes, impair synaptic plasticity, inhibit neurogenesis and trigger long-term neurocognitive deficits. The projected vulnerable period in humans extends from the third trimester of pregnancy to the third year of life. Despite all concerns, there is no ethically and medically acceptable alternative to the use of sedatives and anesthetics for surgeries and painful interventions. Development of measures that prevent injury while allowing the medications to exert their desired actions has enormous translational value. Here we investigated protective potential of hypothermia against histological toxicity of the anesthetic sevoflurane in the developing nonhuman primate brain. Neonatal rhesus monkeys underwent sevoflurane anesthesia over 5 h. Body temperature was regulated in the normothermic (>36.5 °C), mild hypothermic (35-36.5 °C) and moderately hypothermic (<35 °C) range. Animals were euthanized at 8 h and brains examined immunohistochemically (activated caspase 3) and stereologically to quantify apoptotic neuronal and oligodendroglial death. Sevoflurane anesthesia was well tolerated at all temperatures, with oxygen saturations, end tidal CO2 and blood gases remaining at optimal levels. Compared to controls, sevoflurane exposed brains displayed significant apoptosis in gray and white matter affecting neurons and oligodendrocytes. Mild hypothermia (35-36.5 °C) conferred significant protection from apoptotic brain injury, whereas moderate hypothermia (<35 °C) did not. Hypothermia ameliorates anesthesia-induced apoptosis in the neonatal primate brain within a narrow temperature window (35-36.5 °C). Protection is lost at temperatures below 35 °C. Given the mild degree of cooling needed to achieve significant brain protection, application of our findings to humans should be explored further.


Assuntos
Anestésicos Inalatórios/toxicidade , Encéfalo/patologia , Hipotermia Induzida/métodos , Sevoflurano/toxicidade , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Macaca mulatta , Neurônios/efeitos dos fármacos , Neurônios/patologia
10.
Neurobiol Dis ; 127: 554-562, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30951850

RESUMO

Apoptosis is triggered in the developing mammalian brain by sedative, anesthetic or antiepileptic drugs during late gestation and early life. Whether human children are vulnerable to this toxicity mechanism remains unknown, as there are no imaging techniques to capture it. Apoptosis is characterized by distinct structural features, which affect the way damaged tissue scatters ultrasound compared to healthy tissue. We evaluated whether apoptosis, triggered by the anesthetic sevoflurane in the brains of neonatal rhesus macaques, can be detected using quantitative ultrasound (QUS). Neonatal (n = 15) rhesus macaques underwent 5 h of sevoflurane anesthesia. QUS images were obtained through the sagittal suture at 0.5 and 6 h. Brains were collected at 8 h and examined immunohistochemically to analyze apoptotic neuronal and oligodendroglial death. Significant apoptosis was detected in white and gray matter throughout the brain, including the thalamus. We measured a change in the effective scatterer size (ESS), a QUS biomarker derived from ultrasound echo signals obtained with clinical scanners, after sevoflurane-anesthesia in the thalamus. Although initial inclusion of all measurements did not reveal a significant correlation, when outliers were excluded, the change in the ESS between the pre- and post-anesthesia measurements correlated strongly and proportionally with the severity of apoptotic death. We report for the first time in vivo changes in QUS parameters, which may reflect severity of apoptosis in the brains of infant nonhuman primates. These findings suggest that QUS may enable in vivo studies of apoptosis in the brains of human infants following exposure to anesthetics, antiepileptics and other brain injury mechanisms.


Assuntos
Apoptose/fisiologia , Encéfalo/diagnóstico por imagem , Sevoflurano/farmacologia , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Feminino , Macaca mulatta , Masculino , Neurônios/efeitos dos fármacos , Oligodendroglia/efeitos dos fármacos , Ultrassonografia
11.
PLoS Pathog ; 13(10): e1006692, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29073258

RESUMO

Human pegivirus (HPgV) protects HIV+ people from HIV-associated disease, but the mechanism of this protective effect remains poorly understood. We sequentially infected cynomolgus macaques with simian pegivirus (SPgV) and simian immunodeficiency virus (SIV) to model HIV+HPgV co-infection. SPgV had no effect on acute-phase SIV pathogenesis-as measured by SIV viral load, CD4+ T cell destruction, immune activation, or adaptive immune responses-suggesting that HPgV's protective effect is exerted primarily during the chronic phase of HIV infection. We also examined the immune response to SPgV in unprecedented detail, and found that this virus elicits virtually no activation of the immune system despite persistently high titers in the blood over long periods of time. Overall, this study expands our understanding of the pegiviruses-an understudied group of viruses with a high prevalence in the global human population-and suggests that the protective effect observed in HIV+HPgV co-infected people occurs primarily during the chronic phase of HIV infection.


Assuntos
Coinfecção/virologia , Infecções por Flaviviridae/imunologia , Infecções por Flaviviridae/virologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Animais , Coinfecção/imunologia , Modelos Animais de Doenças , Vírus GB C , Macaca fascicularis , Vírus da Imunodeficiência Símia
12.
Sensors (Basel) ; 19(15)2019 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-31357572

RESUMO

This study aims to characterize traumatic spinal cord injury (TSCI) neurophysiologically using an intramuscular fine-wire electromyography (EMG) electrode pair. EMG data were collected from an agonist-antagonist pair of tail muscles of Macaca fasicularis, pre- and post-lesion, and for a treatment and control group. The EMG signals were decomposed into multi-resolution subsets using wavelet transforms (WT), then the relative power (RP) was calculated for each individual reconstructed EMG sub-band. Linear mixed models were developed to test three hypotheses: (i) asymmetrical volitional activity of left and right side tail muscles (ii) the effect of the experimental TSCI on the frequency content of the EMG signal, (iii) and the effect of an experimental treatment. The results from the electrode pair data suggested that there is asymmetry in the EMG response of the left and right side muscles (p-value < 0.001). This is consistent with the construct of limb dominance. The results also suggest that the lesion resulted in clear changes in the EMG frequency distribution in the post-lesion period with a significant increment in the low-frequency sub-bands (D4, D6, and A6) of the left and right side, also a significant reduction in the high-frequency sub-bands (D1 and D2) of the right side (p-value < 0.001). The preliminary results suggest that using the RP of the EMG data, the fine-wire intramuscular EMG electrode pair are a suitable method of monitoring and measuring treatment effects of experimental treatments for spinal cord injury (SCI).


Assuntos
Músculo Esquelético/diagnóstico por imagem , Traumatismos da Medula Espinal/diagnóstico por imagem , Ferimentos e Lesões/diagnóstico por imagem , Animais , Modelos Animais de Doenças , Eletrodos Implantados , Eletromiografia , Humanos , Macaca fascicularis , Músculo Esquelético/fisiologia , Traumatismos da Medula Espinal/diagnóstico , Traumatismos da Medula Espinal/fisiopatologia , Cauda/fisiologia , Ferimentos e Lesões/diagnóstico , Ferimentos e Lesões/fisiopatologia
13.
J Clin Apher ; 32(5): 288-294, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27578423

RESUMO

BACKGROUND: Nonhuman primates, particularly rhesus macaques, are ideal preclinical large animal models to investigate organ tolerance induction protocols using donor hematopoietic stem cells (HSCs) to induce chimerism. Their relatively small size poses some challenges for the safe and effective collection of peripheral blood HSCs through apheresis procedures. We describe our experiences using the Spectra Optia apheresis unit to successfully obtain HSCs from mobilized peripheral blood of rhesus macaques. METHOD: Mobilization of peripheral blood HSCs was induced using granulocyte stimulating factor (G-CSF) and Mozobil. The Spectra Optia unit was used in 18 apheresis procedures in 13 animals (4.9-10 kg). Animal health was carefully monitored during and after the procedure. Changes in peripheral blood cells before, during and after procedure were determined by complete blood count and flow cytometry. RESULTS: The automatic settings of the Spectra Optia unit were applied successfully to the procedures on the rhesus macaque. All animals tolerated the procedure well with no mortality. Mobilization of HSCs were most consistently achieved using 50 µg/kg of G-CSF for 5 days and a single dose of Mozobil on the 5th day, followed by collection of cells 3 h after Mozobil injection. The final apheresis product contained an average of 23 billion total nucleated cells with 47% granulocytes, 3,871 million total CD3 cells and 77 million CD34 cells which resulted in an average of 10 million CD34+ cells/kg of donor weight. CONCLUSION: Apheresis of peripheral blood mobilized HSCs in rhesus macaques using Spectra Optia is a safe and effective procedure.


Assuntos
Antígenos CD34/metabolismo , Remoção de Componentes Sanguíneos/veterinária , Mobilização de Células-Tronco Hematopoéticas/veterinária , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/imunologia , Macaca mulatta/imunologia , Animais , Benzilaminas , Contagem de Células Sanguíneas , Remoção de Componentes Sanguíneos/instrumentação , Remoção de Componentes Sanguíneos/métodos , Ciclamos , Estudos de Viabilidade , Citometria de Fluxo , Fator Estimulador de Colônias de Granulócitos/administração & dosagem , Mobilização de Células-Tronco Hematopoéticas/instrumentação , Mobilização de Células-Tronco Hematopoéticas/métodos , Compostos Heterocíclicos/administração & dosagem , Células-Tronco de Sangue Periférico/citologia , Células-Tronco de Sangue Periférico/imunologia
14.
Nature ; 458(7241): 1034-8, 2009 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-19262509

RESUMO

Although there has been great progress in treating human immunodeficiency virus 1 (HIV-1) infection, preventing transmission has thus far proven an elusive goal. Indeed, recent trials of a candidate vaccine and microbicide have been disappointing, both for want of efficacy and concerns about increased rates of transmission. Nonetheless, studies of vaginal transmission in the simian immunodeficiency virus (SIV)-rhesus macaque (Macacca mulatta) model point to opportunities at the earliest stages of infection in which a vaccine or microbicide might be protective, by limiting the expansion of infected founder populations at the portal of entry. Here we show in this SIV-macaque model, that an outside-in endocervical mucosal signalling system, involving MIP-3alpha (also known as CCL20), plasmacytoid dendritic cells and CCR5(+ )cell-attracting chemokines produced by these cells, in combination with the innate immune and inflammatory responses to infection in both cervix and vagina, recruits CD4(+) T cells to fuel this obligate expansion. We then show that glycerol monolaurate-a widely used antimicrobial compound with inhibitory activity against the production of MIP-3alpha and other proinflammatory cytokines-can inhibit mucosal signalling and the innate and inflammatory response to HIV-1 and SIV in vitro, and in vivo it can protect rhesus macaques from acute infection despite repeated intra-vaginal exposure to high doses of SIV. This new approach, plausibly linked to interfering with innate host responses that recruit the target cells necessary to establish systemic infection, opens a promising new avenue for the development of effective interventions to block HIV-1 mucosal transmission.


Assuntos
Lauratos/farmacologia , Macaca mulatta/virologia , Monoglicerídeos/farmacologia , Mucosa/efeitos dos fármacos , Mucosa/virologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Síndrome de Imunodeficiência Adquirida dos Símios/transmissão , Doença Aguda , Animais , Líquidos Corporais/metabolismo , Líquidos Corporais/virologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Proteínas de Ciclo Celular/metabolismo , Colo do Útero/efeitos dos fármacos , Colo do Útero/imunologia , Colo do Útero/virologia , Quimiocina CCL20/imunologia , Quimiocina CCL20/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Feminino , Proteínas Ligadas por GPI , Perfilação da Expressão Gênica , HIV-1/fisiologia , Interleucina-8/metabolismo , Proteínas de Membrana/metabolismo , Mucosa/imunologia , RNA Viral/sangue , Receptores CCR5/imunologia , Receptores CCR5/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/genética , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/crescimento & desenvolvimento , Vírus da Imunodeficiência Símia/fisiologia , Fatores de Tempo , Vagina/efeitos dos fármacos , Vagina/virologia
15.
Retrovirology ; 11: 66, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-25125288

RESUMO

BACKGROUND: Simian immunodeficiency virus (SIV) infection of nonhuman primates is the predominant model for preclinical evaluation of human immunodeficiency virus (HIV) vaccines. These studies frequently utilize high-doses of SIV that ensure infection after a single challenge but do not recapitulate critical facets of sexual HIV transmission. Investigators are increasingly using low-dose challenges in which animals are challenged once every week or every two weeks in order to better replicate sexual HIV transmission. Using this protocol, some animals require over ten challenges before SIV infection is detectable, potentially inducing localized immunity. Moreover, the lack of certainty over which challenge will lead to productive infection prevents tissue sampling immediately surrounding the time of infection. FINDINGS: Here we challenged Mauritian cynomolgus macaques with 100 50% tissue culture infectious doses (TCID50) of SIVmac239 intrarectally three times a day for three consecutive days. Ten of twelve animals had positive plasma viral loads after this challenge regimen. CONCLUSIONS: This approach represents a straightforward advance in SIV challenge protocols that may avoid induction of local immunity, avoid inconsistent timing between last immunization and infection, and allow sampling immediately after infection using low-dose challenge protocols.


Assuntos
Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Vacinas contra a AIDS/imunologia , Animais , Anticorpos Antivirais/imunologia , Imunização/métodos , Macaca , Macaca fascicularis/imunologia , Macaca fascicularis/virologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Carga Viral
16.
J Virol ; 86(17): 9361-8, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22718834

RESUMO

The first influenza pandemic of the 21st century was caused by novel H1N1 viruses that emerged in early 2009. Molecular evolutionary analyses of the 2009 pandemic influenza A H1N1 [A(H1N1)pdm09] virus revealed two major clusters, cluster I and cluster II. Although the pathogenicity of viruses belonging to cluster I, which became extinct by the end of 2009, has been examined in a nonhuman primate model, the pathogenic potential of viruses belonging to cluster II, which has spread more widely in the world, has not been studied in this animal model. Here, we characterized two Norwegian isolates belonging to cluster II, namely, A/Norway/3568/2009 (Norway3568) and A/Norway/3487-2/2009 (Norway3487), which caused distinct clinical symptoms, despite their genetic similarity. We observed more efficient replication in cultured cells and delayed virus clearance from ferret respiratory organs for Norway3487 virus, which was isolated from a severe case, compared with the efficiency of replication and time of clearance of Norway3568 virus, which was isolated from a mild case. Moreover, Norway3487 virus to some extent caused more severe lung damage in nonhuman primates than did Norway3568 virus. Our data suggest that the distinct replicative and pathogenic potentials of these two viruses may result from differences in their biological properties (e.g., the receptor-binding specificity of hemagglutinin and viral polymerase activity).


Assuntos
Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Influenza Humana/virologia , Sequência de Aminoácidos , Animais , Linhagem Celular , Feminino , Furões , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/patogenicidade , Vírus da Influenza A Subtipo H1N1/fisiologia , Influenza Humana/epidemiologia , Macaca , Dados de Sequência Molecular , Noruega/epidemiologia , Pandemias , Proteínas Virais/genética , Proteínas Virais/metabolismo , Virulência , Replicação Viral
17.
PLoS Pathog ; 7(11): e1002381, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22102819

RESUMO

In mouse models of influenza, T cells can confer broad protection against multiple viral subtypes when antibodies raised against a single subtype fail to do so. However, the role of T cells in protecting humans against influenza remains unclear. Here we employ a translational nonhuman primate model to show that cross-reactive T cell responses play an important role in early clearance of infection with 2009 pandemic H1N1 influenza virus (H1N1pdm). To "prime" cellular immunity, we first infected 5 rhesus macaques with a seasonal human H1N1 isolate. These animals made detectable cellular and antibody responses against the seasonal H1N1 isolate but had no neutralizing antibodies against H1N1pdm. Four months later, we challenged the 5 "primed" animals and 7 naive controls with H1N1pdm. In naive animals, CD8+ T cells with an activated phenotype (Ki-67+ CD38+) appeared in blood and lung 5-7 days post inoculation (p.i.) with H1N1pdm and reached peak magnitude 7-10 days p.i. In contrast, activated T cells were recruited to the lung as early as 2 days p.i. in "primed" animals, and reached peak frequencies in blood and lung 4-7 days p.i. Interferon (IFN)-γ Elispot and intracellular cytokine staining assays showed that the virus-specific response peaked earlier and reached a higher magnitude in "primed" animals than in naive animals. This response involved both CD4+ and CD8+ T cells. Strikingly, "primed" animals cleared H1N1pdm infection significantly earlier from the upper and lower respiratory tract than the naive animals did, and before the appearance of H1N1pdm-specific neutralizing antibodies. Together, our results suggest that cross-reactive T cell responses can mediate early clearance of an antigenically novel influenza virus in primates. Vaccines capable of inducing such cross-reactive T cells may help protect humans against severe disease caused by newly emerging pandemic influenza viruses.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Infecções por Orthomyxoviridae/imunologia , Linfócitos T/imunologia , ADP-Ribosil Ciclase 1/sangue , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Reações Cruzadas , Citocinas/biossíntese , Imunização/métodos , Vacinas contra Influenza/imunologia , Interferon gama/biossíntese , Antígeno Ki-67/sangue , Pulmão/imunologia , Macaca mulatta
18.
Artigo em Inglês | MEDLINE | ID: mdl-37583705

RESUMO

Anxious temperament, characterized by heightened behavioral and physiological reactivity to potential threat, is an early childhood risk factor for the later development of stress-related psychopathology. Using a well-validated nonhuman primate model, we tested the hypothesis that the prefrontal cortex (PFC) is critical in regulating the expression of primate anxiety-like behavior, as well as the function of subcortical components of the anxiety-related neural circuit. We performed aspiration lesions of a narrow 'strip' of the posterior orbitofrontal cortex (OFC) intended to disrupt both cortex and axons entering, exiting and coursing through the pOFC, particularly those of the uncinate fasciculus (UF), a white matter tract that courses adjacent to and through this region. The OFC is of particular interest as a potential regulatory region because of its extensive reciprocal connections with amygdala, other subcortical structures and other frontal lobe regions. We validated this lesion method by demonstrating marked lesion-induced decreases in the microstructural integrity of the UF, which contains most of the fibers that connect the ventral PFC with temporal lobe structures as well as with other frontal regions. While the lesions resulted in modest decreases in threat-related behavior, they substantially decreased metabolism in components of the circuit underlying threat processing. These findings provide evidence for the importance of structural connectivity between the PFC and key subcortical structures in regulating the functions of brain regions known to be involved in the adaptive and maladaptive expression of anxiety.

19.
Bioelectron Med ; 9(1): 9, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37118841

RESUMO

BACKGROUND: Vagus nerve stimulation (VNS) is a FDA approved therapy regularly used to treat a variety of neurological disorders that impact the central nervous system (CNS) including epilepsy and stroke. Putatively, the therapeutic efficacy of VNS results from its action on neuromodulatory centers via projections of the vagus nerve to the solitary tract nucleus. Currently, there is not an established large animal model that facilitates detailed mechanistic studies exploring how VNS impacts the function of the CNS, especially during complex behaviors requiring motor action and decision making. METHODS: We describe the anatomical organization, surgical methodology to implant VNS electrodes on the left gagus nerve and characterization of target engagement/neural interface properties in a non-human primate (NHP) model of VNS that permits chronic stimulation over long periods of time. Furthermore, we describe the results of pilot experiments in a small number of NHPs to demonstrate how this preparation might be used in an animal model capable of performing complex motor and decision making tasks. RESULTS: VNS electrode impedance remained constant over months suggesting a stable interface. VNS elicited robust activation of the vagus nerve which resulted in decreases of respiration rate and/or partial pressure of carbon dioxide in expired air, but not changes in heart rate in both awake and anesthetized NHPs. CONCLUSIONS: We anticipate that this preparation will be very useful to study the mechanisms underlying the effects of VNS for the treatment of conditions such as epilepsy and depression, for which VNS is extensively used, as well as for the study of the neurobiological basis underlying higher order functions such as learning and memory.

20.
J Virol ; 85(24): 13195-203, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21937653

RESUMO

The first influenza pandemic of the 21st century was caused by novel H1N1 viruses that emerged in early 2009. An Asp-to-Gly change at position 222 of the receptor-binding protein hemagglutinin (HA) correlates with more-severe infections in humans. The amino acid at position 222 of HA contributes to receptor-binding specificity with Asp (typically found in human influenza viruses) and Gly (typically found in avian and classic H1N1 swine influenza viruses), conferring binding to human- and avian-type receptors, respectively. Here, we asked whether binding to avian-type receptors enhances influenza virus pathogenicity. We tested two 2009 pandemic H1N1 viruses possessing HA-222G (isolated from severe cases) and two viruses that possessed HA-222D. In glycan arrays, viruses possessing HA-222D preferentially bound to human-type receptors, while those encoding HA-222G bound to both avian- and human-type receptors. This difference in receptor binding correlated with efficient infection of viruses possessing HA-222G, compared to those possessing HA-222D, in human lung tissue, including alveolar type II pneumocytes, which express avian-type receptors. In a nonhuman primate model, infection with one of the viruses possessing HA-222G caused lung damage more severe than did infection with a virus encoding HA-222D, although these pathological differences were not observed for the other virus pair with either HA-222G or HA-222D. These data demonstrate that the acquisition of avian-type receptor-binding specificity may result in more-efficient infection of human alveolar type II pneumocytes and thus more-severe lung damage. Collectively, these findings suggest a new mechanism by which influenza viruses may become more pathogenic in mammals, including humans.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A Subtipo H1N1/patogenicidade , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Receptores Virais/metabolismo , Internalização do Vírus , Animais , Linhagem Celular , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Pulmão/patologia , Pulmão/virologia , Macaca , Receptores Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA