Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Nanomedicine ; 55: 102716, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38738529

RESUMO

Rheumatoid arthritis is a chronic inflammatory autoimmune disease caused by alteration of the immune system. Current therapies have several limitations and the use of nanomedicines represents a promising strategy to overcome them. By employing a mouse model of adjuvant induced arthritis, we aimed to evaluate the biodistribution and therapeutic effects of glucocorticoid dexamethasone conjugated to a nanocarrier based on biocompatible N-(2-hydroxypropyl) methacrylamide copolymers. We observed an increased accumulation of dexamethasone polymer nanomedicines in the arthritic mouse paw using non-invasive fluorescent in vivo imaging and confirmed it by the analysis of tissue homogenates. The dexamethasone conjugate exhibited a dose-dependent healing effect on arthritis and an improved therapeutic outcome compared to free dexamethasone. Particularly, significant reduction of accumulation of RA mediator RANKL was observed. Overall, our data suggest that the conjugation of dexamethasone to a polymer nanocarrier by means of stimuli-sensitive spacer is suitable strategy for improving rheumatoid arthritis therapy.


Assuntos
Artrite Reumatoide , Dexametasona , Polímeros , Animais , Dexametasona/química , Dexametasona/farmacocinética , Dexametasona/administração & dosagem , Dexametasona/farmacologia , Dexametasona/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/patologia , Camundongos , Distribuição Tecidual , Polímeros/química , Polímeros/farmacocinética , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Nanopartículas/química , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética
2.
Mol Ecol ; 32(22): 6070-6082, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37861460

RESUMO

Host-parasite dynamics involve coevolutionary arms races, which may lead to host specialization and ensuing diversification. Our general understanding of the evolution of host specialization in brood parasites is compromised by a restricted focus on bird and insect lineages. The cuckoo catfish (Synodontis multipunctatus) is an obligate parasite of parental care of mouthbrooding cichlids in Lake Tanganyika. Given the ecological and taxonomic diversity of mouthbrooding cichlids in the lake, we hypothesized the existence of sympatric host-specific lineages in the cuckoo catfish. In a sample of 779 broods from 20 cichlid species, we found four species parasitized by cuckoo catfish (with prevalence of parasitism of 2%-18%). All parasitized cichlids were from the tribe Tropheini, maternal mouthbrooders that spawn over a substrate (rather than in open water). Phylogenetic analysis based on genomic (ddRAD sequencing) and mitochondrial (Dloop) data from cuckoo catfish embryos showed an absence of host-specific lineages. This was corroborated by analyses of genetic structure and co-ancestry matrix. Within host species, parasitism was not associated with any individual characteristic we recorded (parent size, water depth), but was costly as parasitized parents carried smaller clutches of their own offspring. We conclude that the cuckoo catfish is an intermediate generalist and discuss costs, benefits and constraints of host specialization in this species and brood parasites in general.


Assuntos
Peixes-Gato , Ciclídeos , Parasitos , Animais , Peixes-Gato/genética , Ciclídeos/genética , Interações Hospedeiro-Parasita/genética , Comportamento de Nidação , Filogenia , Água
3.
Mol Phylogenet Evol ; 180: 107708, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36657626

RESUMO

Crocidura (Eulipotyphla, Soricidae) is the most species-rich genus among mammals, with high cryptic diversity and complicated taxonomy. The hirta-flavescens group of Crocidura represents the most abundant and widespread shrews in savannahs of eastern and southern Africa, making them a suitable phylogeographical model for assessing the role of paleoclimatic changes on current biodiversity in open African habitats. We present the first comprehensive study on the phylogeography, evolutionary history, geographical distribution, systematics, and taxonomy of the group, using the integration of mitochondrial, genome-wide (ddRAD sequencing), morphological and morphometrical data collected from specimens over most of the known geographic distribution. Our genomic data confirmed the monophyly of this group and its sister relationship with the olivieri group of Crocidura. There is a substantial genetic variation within the hirta-flavescens group, with three highly supported clades showing parapatric distribution and which can be distinguished morphologically: C. hirta, distributed in both the Zambezian and Somali-Masai bioregions, C. flavescens, known from South Africa and south-western Zambia, and C. cf. flavescens, which is known to occur only in central and western Tanzania. Morphometric data revealed relatively minor differences between C. hirta and C. cf. flavescens, but they differ in the colouration of the pelage. Diversification of the hirta-flavescens group has most likely happened during phases of grassland expansion and contraction during Plio-Pleistocene climatic cycles. Eastern African Rift system, rivers, and the distinctiveness of Zambezian and Somali-Masai bioregions seem to have also shaped the pattern of their diversity, which is very similar to sympatric rodent species living in open habitats. Finally, we review the group's taxonomy and propose to revalidate C. bloyeti, currently a synonym of C. hirta, including the specimens treated as C. cf. flavescens.


Assuntos
Evolução Biológica , Musaranhos , Animais , Filogenia , Musaranhos/genética , Filogeografia , África Austral
4.
Parasitol Res ; 123(1): 54, 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38102492

RESUMO

Uganda's diverse small mammalian fauna thrives due to its rich habitat diversity, which hosts a wide range of blood parasites, including trypanosomes, particularly the subgenus Herpetosoma typical for rodent hosts. We screened a total of 711 small mammals from various habitats for trypanosomes, with 253 microscopically examined blood smears and 458 tissue samples tested by nested PCR of the 18S rRNA gene. Of 51 rodent and 12 shrew species tested, microscopic screening reaches 7% overall prevalence (with four rodent species positive out of 15 and none of the shrew species out of four), while nested PCR indicated a prevalence of 13% (17 rodent and five shrew species positive out of 49 and 10, respectively). We identified 27 genotypes representing 11 trypanosome species, of which the majority (24 genotypes/9 species) belong to the Herpetosoma subgenus. Among these, we detected 15 new genotypes and two putative new species, labeled AF24 (found in Lophuromys woosnami) and AF25 (in Graphiurus murinus). Our finding of three new genotypes of the previously detected species AF01 belonging to the subgenus Ornithotrypanum in two Grammomys species and Oenomys hypoxanthus clearly indicates the consistent occurrence of this avian trypanosome in African small mammals. Additionally, in Aethomys hindei, we detected the putative new species of the subgenus Aneza. Within the T. lewisi subclade, we detected eleven genotypes, including six new; however, only the genotype AF05b from Mus and Rattus represents the invasive T. lewisi. Our study has improved our understanding of trypanosome diversity in African small mammals. The detection of T. lewisi in native small mammals expands the range of host species and highlighting the need for a broader approach to the epidemiology of T. lewisi.


Assuntos
Trypanosoma lewisi , Trypanosoma , Tripanossomíase , Ratos , Animais , Trypanosoma lewisi/genética , Musaranhos , Uganda/epidemiologia , Trypanosoma/genética , Tripanossomíase/epidemiologia , Tripanossomíase/veterinária , Tripanossomíase/parasitologia , Murinae/parasitologia , Filogenia
5.
Mol Ecol ; 30(10): 2349-2365, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33738874

RESUMO

The Ethiopian highlands represent a remarkable biodiversity 'hot spot' with a very high number of endemic species, even among vertebrates. Ethiopian representatives of a species complex of speckled brush-furred rats (Lophuromys flavopunctatus sensu lato) inhabit highland habitats ranging from low-elevation forests to Afroalpine grasslands. These may serve as a suitable model for understanding evolutionary processes leading to high genetic and ecological diversity in montane biodiversity hot spots. Here, we analyse the most comprehensive genetic data set of this group, comprising 315 specimens (all nine putative Ethiopian Lophuromys taxa sampled across most of their distribution ranges) genotyped at one mitochondrial and four nuclear markers, and thousands of SNPs from ddRAD sequencing. We performed phylogenetic analyses, delimited species and mapped their distribution and estimated divergence time between species (under the species-tree framework) and mitochondrial lineages. We found significant incongruence between mitochondrial and nuclear phylogenies, most probably caused by multiple interspecific introgression events. We discuss alternative scenarios of Ethiopian Lophuromys evolution, from retention of ancestral polymorphism to hybridization upon secondary contact of partially reproductively isolated lineages leading to reticulate evolution. Finally, we use the diversity of the speckled brush-furred rats for the description of the main biogeographic patterns in the fauna of the Ethiopian highlands.


Assuntos
Biodiversidade , Evolução Biológica , Murinae , Animais , DNA Mitocondrial/genética , Ecossistema , Etiópia , Filogenia
6.
Mol Phylogenet Evol ; 157: 107069, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33421615

RESUMO

The tribe Arvicanthini (Muridae: Murinae) is a highly diversified group of rodents (ca. 100 species) and with 18 African genera (plus one Asiatic) represents probably the most successful adaptive radiation of extant mammals in Africa. They colonized a broad spectrum of habitats (from rainforests to semi-deserts) in whole sub-Saharan Africa and their members often belong to most abundant parts of mammal communities. Despite intensive efforts, the phylogenetic relationships among major lineages (i.e. genera) remained obscured, which was likely caused by the intensive radiation of the group, dated to the Late Miocene. Here we used genomic scale data (377 nuclear loci; 581,030 bp) and produced the first fully resolved species tree containing all currently delimited genera of the tribe. Mitogenomes were also extracted, and while the results were largely congruent, there was less resolution at basal nodes of the mitochondrial phylogeny. Results of a fossil-based divergence dating analysis suggest that the African radiation started early after the colonization of Africa by a single arvicanthine ancestor from Asia during the Messinian stage (ca. 7 Ma), and was likely linked with a fragmentation of the pan-African Miocene forest. Some lineages remained in the rain forest, while many others successfully colonized broad spectrum of new open habitats (e.g. savannas, wetlands or montane moorlands) that appeared at the beginning of Pliocene. One lineage even evolved partially arboricolous life style in savanna woodlands, which allowed them to re-colonize equatorial forests. We also discuss delimitation of genera in Arvicanthini and propose corresponding taxonomic changes.


Assuntos
Núcleo Celular/genética , Genoma Mitocondrial , Murinae/classificação , Murinae/genética , África Subsaariana , Animais , Teorema de Bayes , DNA Mitocondrial/genética , Bases de Dados como Assunto , Loci Gênicos , Filogenia , Especificidade da Espécie
7.
Mol Phylogenet Evol ; 155: 107007, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33160039

RESUMO

Murine rodents are one of the most evolutionary successful groups of extant mammals. They are also important for human as vectors and reservoirs of zoonoses and agricultural pests. Unfortunately, their fast and relatively recent diversification impedes our understanding of phylogenetic relationships and species limits of many murine taxa, including those with very conspicuous phenotype that has been frequently used for taxonomic purposes. One of such groups are the striped grass mice (genus Lemniscomys), distributed across sub-Saharan Africa in 11 currently recognized species. These are traditionally classified into three morphological groups according to different pelage colouration on the back: (a) L. barbarus group (three species) with several continuous pale longitudinal stripes; (b) L. striatus group (four species) with pale stripes diffused into short lines or dots; and (c) L. griselda group (four species) with a single mid-dorsal black stripe. Here we reconstructed the most comprehensive molecular phylogeny of the genus Lemniscomys to date, using the largest currently available multi-locus genetic dataset of all but two species. The results show four main lineages (=species complexes) with the distribution corresponding to the major biogeographical regions of Africa. Surprisingly, the four phylogenetic lineages are only in partial agreement with the morphological classification, suggesting that the single-stripe and/or multi-striped phenotypes evolved independently in multiple lineages. Divergence dating showed the split of Lemniscomys and Arvicanthis genera at the beginning of Pleistocene; most of subsequent speciation processes within Lemniscomys were affected by Pleistocene climate oscillations, with predominantly allopatric diversification in fragmented savanna biome. We propose taxonomic suggestions and directions for future research of this striking group of African rodents.


Assuntos
Loci Gênicos , Filogenia , Sigmodontinae/anatomia & histologia , Sigmodontinae/classificação , África Subsaariana , Animais , Teorema de Bayes , Calibragem , Clima , DNA Mitocondrial/genética , Variação Genética , Geografia , Haplótipos/genética , Mitocôndrias/genética , Especificidade da Espécie , Fatores de Tempo
8.
Mol Phylogenet Evol ; 163: 107263, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34273505

RESUMO

The tribe Praomyini is a diversified group including 64 species and eight extant rodent genera. They live in a broad spectrum of habitats across whole sub-Saharan Africa. Members of this tribe are often very abundant, they have a key ecological role in ecosystems, they are hosts of many potentially pathogenic microorganisms and comprise numerous agricultural pests. Although this tribe is well supported by both molecular and morphological data, its intergeneric relationships and the species contents of several genera are not yet fully resolved. Recent molecular data suggest that at least three genera in current sense are paraphyletic. However, in these studies the species sampling was sparse and the resolution of relationships among genera was poor, probably due to a fast radiation of the tribe dated to the Miocene and insufficient amount of genetic data. Here we used genomic scale data (395 nuclear loci = 610,965 bp long alignment and mitogenomes = 14,745 bp) and produced the first fully resolved species tree containing most major lineages of the Praomyini tribe (i.e. all but one currently delimited genera and major intrageneric clades). Results of a fossil-based divergence dating analysis suggest that the radiation started during the Messinian stage (ca. 7 Ma) and was likely linked to a fragmentation of the pan-African Miocene forest. Some lineages remained in the rain forests, while many others adapted to a broad spectrum of new open lowland and montane habitats that appeared at the beginning of Pliocene. Our analyses clearly confirmed the presence of three polyphyletic genera (Praomys, Myomyscus and Mastomys). We review current knowledge of these three genera and suggest corresponding taxonomic changes. To keep genera monophyletic, we propose taxonomic re-arrangements and delimit four new genera. Furthermore, we discovered a new highly divergent genetic lineage of Praomyini in southwestern Ethiopia, which is described as a new species and genus.


Assuntos
Ecossistema , Murinae , Animais , Evolução Biológica , Etiópia , Filogenia
9.
Mol Phylogenet Evol ; 144: 106703, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31816395

RESUMO

Wood mice of the genus Hylomyscus, are small-sized rodents widely distributed in lowland and montane rainforests in tropical Africa, where they can be locally abundant. Recent morphological and molecular studies have increased the number of recognized species from 8 to 18 during the last 15 years. We used complete mitochondrial genomes and five nuclear genes to infer the number of candidate species within this genus and depict its evolutionary history. In terms of gene sampling and geographical and taxonomic coverage, this is the most comprehensive review of the genus Hylomyscus to date. The six species groups (aeta, alleni, anselli, baeri, denniae and parvus) defined on morphological grounds are monophyletic. Species delimitation analyses highlight undescribed diversity within this genus: perhaps up to 10 taxa need description or elevation from synonymy, pending review of type specimens. Our divergence dating and biogeographical analyses show that diversification of the genus occurred after the end of the Miocene and is closely linked to the history of the African forest. The formation of the Rift Valley combined with the declining global temperatures during the Late Miocene caused the fragmentation of the forests and explains the first split between the denniae group and remaining lineages. Subsequently, periods of increased climatic instability during Plio-Pleistocene probably resulted in elevated diversification in both lowland and montane forest taxa.


Assuntos
Evolução Biológica , Variação Genética , Genoma Mitocondrial , Murinae/classificação , Murinae/genética , África , Animais , Núcleo Celular/genética , DNA Mitocondrial/genética , Ecossistema , Florestas , Camundongos , Filogenia , Análise de Sequência de DNA , Clima Tropical
10.
Mol Phylogenet Evol ; 130: 143-155, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30321697

RESUMO

The grey-bellied pygmy mouse (Mus triton) from the endemic African subgenus Nannomys is a widespread rodent species inhabiting the highlands of eastern and central Africa. Although it has long been considered as a single species, recent data has suggested the existence of a species complex. In order to evaluate the geographical structure and current taxonomy of M. triton, we analysed one mitochondrial and six nuclear genes from individuals covering most of its distribution range. Our analysis revealed the existence of at least five distinct genetic lineages with only marginal overlaps among their distributional ranges. Morphological comparisons, however, showed large overlaps in external body measurements and only a weak differentiation in skull form. Therefore, we suggest maintaining M. triton as a single taxon with pronounced intraspecific genetic structure. Divergence dating analysis placed the most recent common ancestor of the extant lineages of M. triton to the early Pleistocene (about 2.0 Ma). The phylogeographic structure of the species was likely shaped by Pleistocene climatic oscillations and the highly diverse topography of eastern Africa.


Assuntos
Variação Genética , Filogenia , Sigmodontinae/classificação , Sigmodontinae/genética , África Oriental , Animais , Camundongos , Filogeografia , Sigmodontinae/anatomia & histologia , Sigmodontinae/fisiologia
11.
Mol Phylogenet Evol ; 133: 1-11, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30586649

RESUMO

South-east Europe, along with the adjacent region of south-west Asia, is an important biodiversity hotspot with high local endemism largely contributed by contemporary continental lineages that retreated to southern refugia during colder Quaternary periods. We investigated the genetic diversity of the European bitterling fish (Rhodeus amarus) species complex (Cyprinidae) across its range in the western Palearctic, but with a particular emphasis in the region of Balkan, Pontic and Caspian refugia. We genotyped 12 polymorphic microsatellite loci and a partial sequence of mitochondrial gene cytochrome b (CYTB) for a set of 1,038 individuals from 60 populations. We used mtDNA sequences to infer phylogenetic relationships and historical demography, and microsatellite markers to describe fine-scale genetic variability and structure. Our mtDNA analysis revealed six well-supported lineages, with limited local co-occurrence. Two lineages are distributed throughout central and western Europe (lineages "A" and "B"), with two zones of secondary contact. Another two lineages were restricted to the Ponto-Aegean region of Greece (lineages "C" and "D") and the final two lineages were restricted south of the Caucasus mountains (lineage "E" from the Black Sea watershed and lineage "F" from the Caspian watershed). A signal of recent expansion was revealed in the two widespread lineages and the Ponto-Aegean lineage "C". The geographic distribution of clusters detected by nuclear microsatellites corresponded well with mitochondrial lineages and demonstrated finely sub-structured populations. A profound population structure suggested a significant role of genetic drift in differentiation among lineages. Lineage divergence in the Ponto-Aegean and Caspian regions are substantial, supporting the validity of two described endemic species (Rhodeus meridionalis as lineage "D" and Rhodeus colchicus as lineage "E") and invite taxonomic evaluation of the other two southern lineages (Thracean "C" and Caspian "F").


Assuntos
Cyprinidae/classificação , Animais , Ásia Ocidental , Biodiversidade , Cyprinidae/genética , Citocromos b/genética , DNA Mitocondrial/química , Demografia , Europa (Continente) , Deriva Genética , Variação Genética , Genótipo , Repetições de Microssatélites , Mitocôndrias/genética , Filogenia
12.
BMC Evol Biol ; 18(1): 105, 2018 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-29973160

RESUMO

BACKGROUND: Anthropogenic factors can have a major impact on the contemporary distribution of intraspecific genetic diversity. Many freshwater fishes have finely structured and locally adapted populations, but their natural genetic structure can be affected by river engineering schemes across river basins, fish transfers in aquaculture industry and conservation management. The European bitterling (Rhodeus amarus) is a small fish that is a brood parasite of freshwater mussels and is widespread across continental Europe. Its range recently expanded, following sharp declines in the 1970s and 1980s. We investigated its genetic variability and spatial structure at the centre of its distribution at the boundary of three watersheds, testing the role of natural and anthropogenic factors in its genetic structure. RESULTS: Sequences of mitochondrial cytochrome B (CYTB) revealed that bitterling colonised central Europe from two Ponto-Caspian refugia, which partly defines its contemporary genetic structure. Twelve polymorphic microsatellite loci revealed pronounced interpopulation differentiation, with significant small-scale differentiation within the same river basins. At a large scale, populations from the Baltic Sea watershed (middle Oder and Vistula basins) were distinct from those from the Black Sea watershed (Danube basin), while populations from rivers of the North Sea watershed (Rhine, Elbe) originated from the admixture of both original sources. Notable exceptions demonstrated the potential role of human translocations across watersheds, with the upper River Oder (Baltic watershed) inhabited by fish from the Danube basin (Black Sea watershed) and a population in the southern part of the River Elbe (North Sea watershed) basin possessing a signal of admixture from the Danube basin. CONCLUSIONS: Hydrography and physical barriers to dispersal are only partly reflected in the genetic structure of the European bitterling at the intersection of three major watersheds in central Europe. Drainage boundaries have been obscured by human-mediated translocations, likely related to common carp, Cyprinus carpio, cultivation and game-fish management. Despite these translocations, populations of bitterling are significantly structured by genetic drift, possibly reinforced by its low dispersal ability. Overall, the impact of anthropogenic factors on the genetic structure of the bitterling populations in central Europe is limited.


Assuntos
Carpas/genética , Rios , Animais , Teorema de Bayes , DNA Mitocondrial/genética , Europa (Continente) , Água Doce , Frequência do Gene/genética , Variação Genética , Genética Populacional , Geografia , Humanos , Repetições de Microssatélites/genética , Mitocôndrias/genética , Mar do Norte , Especificidade da Espécie
13.
Mol Ecol ; 27(24): 5214-5227, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30427096

RESUMO

Parasite hybrid zones resulting from host secondary contact have never been described in nature although parasite hybridization is well known and secondary contact should affect them similarly to free-living organisms. When host populations are isolated, diverge and recontact, intimate parasites (host specific, direct life cycle) carried during isolation will also meet and so may form parasite hybrid zones. If so, we hypothesize these should be narrower than the host's hybrid zone as shorter parasite generation time allows potentially higher divergence. We investigate multilocus genetics of two parasites across the European house mouse hybrid zone. We find each host taxon harbours its own parasite taxa. These also hybridize: Parasite hybrid zones are significantly narrower than the host's. Here, we show a host hybrid zone is a suture zone for a subset of its parasite community and highlight the potential of such systems as windows on the evolutionary processes of host-parasite interactions and recombinant pathogen emergence.


Assuntos
Genética Populacional , Hibridização Genética , Camundongos/parasitologia , Parasitos/genética , Animais , República Tcheca , DNA Mitocondrial/genética , Marcadores Genéticos , Genótipo , Alemanha , Camundongos/genética , Nematoides/genética , Filogenia , Pneumocystis/genética
14.
Mol Ecol ; 27(13): 2871-2883, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29772096

RESUMO

Positive selection acting on Toll-like receptors (TLRs) has been recently investigated to reveal evolutionary mechanisms of host-pathogen molecular co-adaptation. Much of this research, however, has focused mainly on the identification of sites predicted to be under positive selection, bringing little insight into the functional differences and similarities among species and a limited understanding of convergent evolution in the innate immune molecules. In this study, we provide evidence of phenotypic variability in the avian TLR4 ligand-binding region (LBR), the direct interface between host and pathogen molecular structures. We show that 55 passerine species vary substantially in the distribution of electrostatic potential on the surface of the receptor, and based on these distinct patterns, we identified four species clusters. Seven of the 34 evolutionarily nonconservative and positively selected residues correspond topologically to sites previously identified as being important for lipopolysaccharide, lipid IVa or MD-2 binding. Five of these positions codetermine the identity of the charge clusters. Groups of species that host-related communities of pathogens were predicted to cluster based on their TLR4 LBR charge. Despite some evidence for convergence among taxa, there were no clear associations between the TLR4 LBR charge distribution and any of the general ecological characteristics compared (migration, latitudinal distribution and diet). Closely related species, however, mostly belonged to the same surface charge cluster indicating that phylogenetic constraints are key determinants shaping TLR4 adaptive evolution. Our results suggest that host innate immune evolution is consistent with Fahrenholz's rule on the cospeciation of hosts and their parasites.


Assuntos
Evolução Molecular , Interações Hospedeiro-Patógeno/genética , Seleção Genética , Receptor 4 Toll-Like/genética , Animais , Aves/genética , Aves/parasitologia , Glicolipídeos/química , Glicolipídeos/genética , Imunidade Inata/genética , Ligantes , Lipídeo A/análogos & derivados , Lipídeo A/química , Lipídeo A/genética , Lipopolissacarídeos/química , Lipopolissacarídeos/genética , Antígeno 96 de Linfócito/química , Antígeno 96 de Linfócito/genética , Microbiota/genética , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Seleção Genética/genética , Análise de Sequência de DNA , Eletricidade Estática , Receptor 4 Toll-Like/química
15.
Mol Phylogenet Evol ; 128: 98-111, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30030180

RESUMO

Murid rodents (Rodentia: Muridae) represent the most diverse and abundant mammalian family. In this study, we provide a refined set of fossil calibrations which is used to reconstruct a dated phylogeny of the family using a multilocus dataset (six nuclear and nine mitochondrial gene fragments) encompassing 161 species representing 82 murid genera from four extant subfamilies (Deomyinae, Gerbillinae, Lophiomyinae and Murinae). In comparison with previous studies on murid or muroid rodents, our work stands out for the implementation of nine robust fossil constraints within the Muridae thanks to a thorough review of the fossil record. Before being assigned to specific nodes of the phylogeny, all potential fossil constraints were carefully assessed; they were also subjected to several cross-validation analyses. The resulting phylogeny is consistent with previous phylogenetic studies on murids, and recovers the monophyly of all sampled murid subfamilies and tribes. Based on nine controlled fossil calibrations, our inferred temporal timeframe indicates that the murid family likely originated in the course of the Early Miocene, 22.0-17.0 million years ago (Ma), and that most major lineages (i.e. tribes) started diversifying ca. 10 Ma. Historical biogeography analyses support the tropical origin for the family, with an initial internal split (vicariance event) between Afrotropical and Oriental (Indomalaya and Philippines) lineages. During the course of their diversification, the biogeographic pattern of murids is marked by several dispersal events toward the Australasian and the Palearctic regions. The Afrotropical region was also secondarily colonized at least three times from the Indomalaya, indicating that the latter region has acted as a major centre of diversification for the family.


Assuntos
Fósseis , Muridae/classificação , Filogenia , Animais , Teorema de Bayes , Calibragem , Filogeografia , Fatores de Tempo
16.
Mol Phylogenet Evol ; 126: 105-115, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29626665

RESUMO

Root-rats of the genus Tachyoryctes (Spalacidae) are subterranean herbivores occupying open humid habitats in the highlands of Eastern Africa. There is strong disagreement about species diversity of the genus, because some authors accept two species, while others more than ten. Species with relatively high surface activity, the giant root-rat Tachyoryctes macrocephalus, which is by far largest member of the genus, and the more fossorial African root-rat Tachyoryctes splendens, which eventually has been divided up to 12-13 species, represent two major morphological forms within the genus. In our study, we carried out a multilocus analysis of root-rats' genetic diversity based on samples from 41 localities representing most of Tachyoryctes geographic distribution. Using two mitochondrial and three nuclear genes, we found six main genetic clades possibly representing separate species. These clades were organised into three basal groups whose branching is not well resolved, probably due to fast radiation in the late Pliocene and early Pleistocene. Climatic changes in that time, i.e. fast and repeated changes between extremely dry and humid conditions, which both limited root-rat dispersal, probably stimulated their initial genetic diversification. Contrary to expectation based on the largest root-rat diversity in Kenya (up to eight species by some authors), we found the highest diversity in the Ethiopian highlands, because all but one putative species occur there. All individuals outside of Ethiopia belong to a single recently diverged and expanded clade. This species should bear the name T. annectens (Thomas, 1891), and all other names of taxa described from outside of Ethiopia should be considered its junior synonyms. However, to solve taxonomic issues, future detailed morphological analyses should be conducted on all main clades together with genetic analysis of material from areas of their supposed contact. One of the most interesting findings of the study is the internal position of T. macrocephalus in T. splendens sensu lato. This demonstrates the intriguing phenomenon of accelerated morphological evolution of rodents occupying the Afroalpine zone in Ethiopia. Finally, we discuss how the distribution of Tachyoryctes is influenced by competition with another group of subterranean herbivores on the continent, the African mole-rats. We assume that both groups do not compete directly as previously expected, but specialisation to different subterranean niches is the main factor responsible for their spatial segregation.


Assuntos
Ecossistema , Roedores/genética , Animais , Teorema de Bayes , DNA Mitocondrial/genética , Etiópia , Geografia , Filogenia , Especificidade da Espécie , Fatores de Tempo
17.
Mol Phylogenet Evol ; 118: 75-87, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28963084

RESUMO

The Ethiopian highlands are the most extensive complex of mountainous habitats in Africa. The presence of the Great Rift Valley (GRV) and the striking elevational ecological gradients inhabited by recently radiated Ethiopian endemics, provide a wide spectrum of model situations for evolutionary studies. The extant species of endemic rodents, often markedly phenotypically differentiated, are expected to possess complex genetic features which evolved asa consequence of the interplay between geomorphology and past climatic changes. In this study, we used the largest available multi-locus genetic dataset of the murid genus Stenocephalemys (347 specimens from ca 40 localities across the known distributional area of all taxa) to investigate the relative importance of disruptive selection, temporary geographic isolation and introgression in their adaptive radiations in the Pleistocene. We confirmed the four main highly supported mitochondrial (mtDNA) clades that were proposed as four species in a previous pilot study: S. albipes is a sister species of S. griseicauda (both lineages are present on both sides of the GRV), while the second clade is formed by two Afro-alpine species, S. albocaudata (east of GRV) and the undescribed Stenocephalemys sp. A (west of GRV). There is a clear elevational gradient in the distribution of the Stenocephalemys taxa with two to three species present at different elevations of the same mountain range. Surprisingly, the nuclear species tree corresponded only a little to the mtDNA tree. Multispecies coalescent models based on six nuclear markers revealed the presence of six separate gene pools (i.e. candidate species), with different topology. Phylogenetic analysis, together with the geographic distribution of the genetic groups, suggests a complex reticulate evolution. We propose a scenario that involves (besides classical allopatric speciation) two cases of disruptive selection along the elevational ecological gradient, multiple crosses of GRV in dry and cold periods of the Pleistocene, followed by hybridization and mtDNA introgression on imperfect reproductive barriers. Spatial expansion of the currently most widespread "albipes" mtDNA clade was followed by population fragmentation, lineage sorting and again by hybridization and mtDNA introgression. Comparison of this genetic structure to other Ethiopian endemic taxa highlight the geographical areas of special conservation concern, where more detailed biodiversity studies should be carried out to prevent many endemic taxa from going extinct even before they are recognized.


Assuntos
Evolução Molecular , Murinae/classificação , Animais , Citocromos b/química , Citocromos b/classificação , Citocromos b/genética , DNA Mitocondrial/química , DNA Mitocondrial/isolamento & purificação , DNA Mitocondrial/metabolismo , Ecossistema , Etiópia , Haplótipos , Hibridização Genética , Cariótipo , Murinae/anatomia & histologia , Murinae/genética , Filogenia
18.
Front Zool ; 14: 9, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28239400

RESUMO

BACKGROUND: Sexual selection has been hypothesised as favouring mate choice resulting in production of viable offspring with genotypes providing high pathogen resistance. Specific pathogen recognition is mediated by genes of the major histocompatibility complex (MHC) encoding proteins fundamental for adaptive immune response in jawed vertebrates. MHC genes may also play a role in odour-based individual recognition and mate choice, aimed at avoiding inbreeding. MHC genes are known to be involved in mate choice in a number of species, with 'good genes' (absolute criteria) and 'complementary genes' (self-referential criteria) being used to explain MHC-based mating. Here, we focus on the effect of morphological traits and variation and genetic similarity between individuals in MHC class IIB (MHCIIB) exon 2 on mating in a free-living population of a monogamous bird, the grey partridge. RESULTS: We found no evidence for absolute mate choice criteria as regards grey partridge MHCIIB genotypes, i.e., number and occurrence of amino acid variants, though red chroma of the spot behind eyes was positively associated with male pairing success. On the other hand, mate choice at MHCIIB was based on relative criteria as females preferentially paired with more dissimilar males having a lower number of shared amino acid variants. This observation supports the 'inbreeding avoidance' and 'complementary genes' hypotheses. CONCLUSIONS: Our study provides one of the first pieces of evidence for MHC-based mate choice for genetic complementarity in a strictly monogamous bird. The statistical approach employed can be recommended for testing mating preferences in cases where availability of potential mates (recorded with an appropriate method such as radio-tracking) shows considerable temporal variation. Additional genetic analyses using neutral markers may detect whether MHC-based mate choice for complementarity emerges as a by-product of general inbreeding avoidance in grey partridges.

19.
BMC Evol Biol ; 15: 71, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25900417

RESUMO

BACKGROUND: This study aims to reconstruct the evolutionary history of African shrews referred to the Crocidura olivieri complex. We tested the respective role of forest retraction/expansion during the Pleistocene, rivers (allopatric models), ecological gradients (parapatric model) and anthropogenic factors in explaining the distribution and diversification within this species complex. We sequenced three mitochondrial and four nuclear markers from 565 specimens encompassing the known distribution of the complex, i.e. from Morocco to Egypt and south to Mozambique. We used Bayesian phylogenetic inference, genetic structure analyses and divergence time estimates to assess the phylogenetic relationships and evolutionary history of these animals. RESULTS: The C. olivieri complex (currently composed of C. olivieri, C. fulvastra, C. viaria and C. goliath) can be segregated into eight principal geographical clades, most exhibiting parapatric distributions. A decrease in genetic diversity was observed between central and western African clades and a marked signal of population expansion was detected for a broadly distributed clade occurring across central and eastern Africa and portions of Egypt (clade IV). The main cladogenesis events occurred within the complex between 1.37 and 0.48 Ma. Crocidura olivieri sensu stricto appears polyphyletic and C. viaria and C. fulvastra were not found to be monophyletic. CONCLUSIONS: Climatic oscillations over the Pleistocene probably played a major role in shaping the genetic diversity within this species complex. Different factors can explain their diversification, including Pleistocene forest refuges, riverine barriers and differentiation along environmental gradients. The earliest postulated members of the complex originated in central/eastern Africa and the first radiations took place in rain forests of the Congo Basin. A dramatic shift in the ecological requirements in early members of the complex, in association with changing environments, took place sometime after 1.13 Ma. Some lineages then colonized a substantial portion of the African continent, including a variety of savannah and forest habitats. The low genetic divergence of certain populations, some in isolated localities, can be explained by their synanthropic habits. This study underlines the need to revise the taxonomy of the C. olivieri complex.


Assuntos
Filogeografia , Musaranhos/genética , África , Animais , Teorema de Bayes , Evolução Biológica , Ecologia , Ecossistema , Florestas , Deriva Genética , Especiação Genética , Variação Genética , Filogenia , Musaranhos/classificação
20.
Mol Ecol ; 24(20): 5248-66, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26340076

RESUMO

Understanding historical influences of climate and physiographic barriers in shaping patterns of biodiversity remains limited for many regions of the world. For mammals of continental Africa, phylogeographic studies, particularly for West African lineages, implicate both geographic barriers and climate oscillations in shaping small mammal diversity. In contrast, studies for southern African species have revealed conflicting phylogenetic patterns for how mammalian lineages respond to both climate change and geologic events such as river formation, especially during the Pleistocene. However, these studies were often biased by limited geographic sampling or exclusively focused on large-bodied taxa. We exploited the broad southern African distribution of a savanna-woodland-adapted African rodent, Gerbilliscus leucogaster (bushveld gerbil) and generated mitochondrial, autosomal and sex chromosome data to quantify regional signatures of climatic and vicariant biogeographic phenomena. Results indicate the most recent common ancestor for all G. leucogaster lineages occurred during the early Pleistocene. We documented six divergent mitochondrial lineages that diverged ~0.270-0.100 mya, each of which was geographically isolated during periods characterized by alterations to the course of the Zambezi River and its tributaries as well as regional 'megadroughts'. Results demonstrate the presence of a widespread lineage exhibiting demographic expansion ~0.065-0.035 mya, a time that coincides with savanna-woodland expansion across southern Africa. A multilocus autosomal perspective revealed the influence of the Kafue River as a current barrier to gene flow and regions of secondary contact among divergent mitochondrial lineages. Our results demonstrate the importance of both climatic fluctuations and physiographic vicariance in shaping the distribution of southern African biodiversity.


Assuntos
Evolução Molecular , Genética Populacional , Gerbillinae/genética , África Austral , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Distribuição Animal , Animais , Mudança Climática , DNA Mitocondrial/genética , Feminino , Geografia , Gerbillinae/classificação , Haplótipos , Masculino , Modelos Teóricos , Dados de Sequência Molecular , Filogenia , Filogeografia , Análise de Sequência de DNA , Análise Espacial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA