Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
RSC Adv ; 9(48): 27904-27910, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-35530501

RESUMO

In order to reduce the widespread threat of bacterial pathogen diseases, mechanical bactericidal surfaces have been widely reported. However, few of these nanostructured surfaces were investigated from a sustainable perspective. In this study, we have prepared, inspired by the slippery zone of Nepenthes, a multifunctional nanostructured surface with mechanical bactericidal, self-cleaning and insect anti-adhesive characteristics. First, a nanoblade-like surface made of Zn-Al layered double hydroxides was prepared for achieving faster bactericidal rate and wider bactericidal spectrum (2.10 × 104 CFU cm-2 min-1 against Escherichia coli and 1.78 × 103 CFU cm-2 min-1 against Staphylococcus aureus). Then the self-cleaning and insect anti-adhesive properties were tested on the fluorosilane-modified nanoblades, leaving little cell debris remaining on the surface even after 4 continuous bactericidal experiments, and showing a slippery surface for ants to slide down in 3 s. This study not only discovers a new nature-inspired mechanical bactericidal nanotopography, but also provides a facile approach to incorporate multiple functions into the nanostructured surface for practical antibacterial applications.

2.
Polymers (Basel) ; 11(10)2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31581542

RESUMO

The determination of molecular weight of natural cellulose remains a challenge nowadays, due to the difficulty in dissolving cellulose. In this work, tetra-n-butylammonium hydroxide (TBAH) and dimethyl sulfoxide (DMSO) aqueous solution (THDS) were used to dissolve cellulose in a few minutes under room temperature into true molecular solutions. That is to say, the cellulose was dissolved in the solution in molecular level, and the viscosity of the solution is linearly dependent on the concentration of cellulose. The relationship between the molecular weight of cellulose and the intrinsic viscosity tested in such dilute solutions has been established in the form of the Mark-Houwink equation, η=0.24×DP1.21. The value of 1.21 indicates that the cellulose molecules dissolve in THDS quite well. The cellulose dispersion in the THDS was proved to be in molecular level by atomic force microscope (AFM) and dynamic light scattering (DLS). The reliability of the established Mark-Houwink equation was cross-checked by the gel permeation chromatography (GPC) and traditional copper (II) ethylenediamine (CED) method. No considerate degradation was observed by comparing the intrinsic viscosity and the degree of polymerization (DP) values of the original with and the regenerated cellulose samples. The natural cellulose can be molecularly dispersed in the multiple-component solvent (THDS), and kept stable for a certain period. A time efficient and reliable method has been supplied for determination of the degree of polymerization and the molecular weight of cellulose.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA