Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Int J Mol Sci ; 23(15)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35955612

RESUMO

Soil salinization is a global problem that limits crop yields and threatens agricultural development. Auxin-induced expansins contribute to plant salt tolerance through cell wall loosening. However, how auxins and expansins contribute to the adaptation of the halophyte quinoa (Chenopodium quinoa) to salt stress has not yet been reported. Here, auxin was found to contribute to the salt tolerance of quinoa by promoting the accumulation of photosynthetic pigments under salt stress, maintaining enzymatic and nonenzymatic antioxidant systems and scavenging excess reactive oxygen species (ROS). The Chenopodium quinoa expansin (Cqexpansin) family and the auxin pathway gene family (Chenopodium quinoa auxin response factor (CqARF), Chenopodium quinoa auxin/indoleacetic acid (CqAux/IAA), Chenopodium quinoa Gretchen Hagen 3 (CqGH3) and Chenopodium quinoa small auxin upregulated RNA (CqSAUR)) were identified from the quinoa genome. Combined expression profiling identified Chenopodium quinoa α-expansin 50 (CqEXPA50) as being involved in auxin-mediated salt tolerance. CqEXPA50 enhanced salt tolerance in quinoa seedlings was revealed by transient overexpression and physiological and biochemical analyses. Furthermore, the auxin pathway and salt stress-related genes regulated by CqEXPA50 were identified. The interaction of CqEXPA50 with these proteins was demonstrated by bimolecular fluorescence complementation (BIFC). The proteins that interact with CqEXPA50 were also found to improve salt tolerance. In conclusion, this study identified some genes potentially involved in the salt tolerance regulatory network of quinoa, providing new insights into salt tolerance.


Assuntos
Chenopodium quinoa , Chenopodium quinoa/química , Ácidos Indolacéticos/metabolismo , Estresse Salino , Tolerância ao Sal/genética , Plantas Tolerantes a Sal/metabolismo
2.
Int J Mol Sci ; 22(6)2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33801146

RESUMO

The thick and hard fruit shell of Fagopyrum tataricum (F. tataricum) represents a processing bottleneck. At the same time, soil salinization is one of the main problems faced by modern agricultural production. Bioinformatic analysis indicated that the F. tataricum transcription factor FtNAC16 could regulate the hull cracking of F. tataricum, and the function of this transcription factor was verified by genetic transformation of Arabidopsis thaliana (A. thaliana). Phenotypic observations of the wild-type (WT), OE-FtNAC16, nst1/3 and nst1/3-FtNAC16 plant lines confirmed that FtNAC16 negatively regulated pod cracking by downregulating lignin synthesis. Under salt stress, several physiological indicators (POD, GSH, Pro and MDA) were measured, A. thaliana leaves were stained with NBT (Nitroblue Tetrazolium) and DAB (3,3'-diaminobenzidine), and all genes encoding enzymes in the lignin synthesis pathway were analyzed. These experiments confirmed that FtNAC16 increased plant sensitivity by reducing the lignin content or changing the proportions of the lignin monomer. The results of this study may help to elucidate the possible association between changes in lignin monomer synthesis and salt stress and may also contribute to fully understanding the effects of FtNAC16 on plant growth and development, particularly regarding fruit pod cracking and environmental adaptability. In future studies, it may be useful to obtain suitable cracking varieties and salt-tolerant crops through molecular breeding.


Assuntos
Arabidopsis/fisiologia , Fagopyrum/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Salinidade , Tolerância ao Sal/genética , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Clonagem Molecular , Lignina/biossíntese , Fenótipo , Filogenia , Desenvolvimento Vegetal , Estresse Fisiológico
3.
Pak J Pharm Sci ; 34(1(Special)): 481-486, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34275797

RESUMO

This study aims to study the role of gefitinib on patients with advanced EGFR-mutation NSCLC (Non-Small Cell Lung Cancer). Totally 115 patients with advanced EGFR-mutation NSCLC treated in our hospital were enrolled as research objects. They were randomly divided into control group (n=57) applied with cisplatin ± pemetrexed and experimental group (n=58) subject to gefitinib± cisplatin ± pemetrexed, both groups were applied with treatment for 4 cycles. Clinical efficacy: The disease control rate (DCR) was 72.41% in the experimental group, which was higher than that of the control group (54.39%, p<0.05); Serum CEA, CYFRA21-1, MMP-9 levels: after 2 and 4 cycles of treatment, serum CEA, CYFRA21-1, and MMP-9 levels were lower in the experimental group (p<0.05); Immune function: after 2 and 4 cycles of treatment, Th1 cells and Th1/Th2 cell levels were higher in the experimental group, while Th2 cell level was higher in the control group (p<0.05); Angiogenesis related indicators: the levels of VEGF, HIF-1α and sCD105 were lower in the experimental group after 2 and 4 cycles of treatment (p<0.05); (5) Adverse reactions: After 2 and 4 cycles of treatment, the levels of VEGF, HIF-1α, and sCD105 were lower in the experimental group (p<0.05). The application of gefitinib in patients with advanced EGFR-mutation NSCLC can help down-regulate CEA, CYFRA21-1, and MMP-9 levels, inhibit angiopoiesis, enhance immune function, and increase disease control rate.


Assuntos
Adenocarcinoma de Pulmão/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma de Células Escamosas/tratamento farmacológico , Gefitinibe/administração & dosagem , Neoplasias Pulmonares/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Adulto , Idoso , Antígenos de Neoplasias/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Cisplatino/administração & dosagem , Endoglina/metabolismo , Receptores ErbB/genética , Feminino , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Queratina-19/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Pessoa de Meia-Idade , Pemetrexede/administração & dosagem , Equilíbrio Th1-Th2 , Fator A de Crescimento do Endotélio Vascular/metabolismo
4.
Planta ; 252(5): 81, 2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-33037484

RESUMO

MAIN CONCLUSION: Ferrous iron can promote the development of glandular trichomes and increase the content of blinin, which depends on CbHO-1 expression. Conyza blinii (C. blinii) is a unique Chinese herbal medicine that grows in Sichuan Province, China. Because the habitat of C. blinii is an iron ore mining area with abundant iron content, this species can be used as one of the best materials to study the mechanism of plant tolerance to iron. In this study, C. blinii was treated with ferrous-EDTA solutions at different concentrations, and it was found that the tolerance value of C. blinii to iron was 200 µM. Under this concentration, the plant height, root length, biomass, and iron content of C. blinii increased to the maximum values, and the effect was dependent on the upregulated expression of CbHO-1. At the same time, under ferrous iron, the photosynthetic capacity and capitate glandular trichome density of C. blinii also significantly increased, providing precursors and sites for the synthesis of blinin, thus significantly increasing the content of blinin. These processes were also dependent on the high expression of CbHO-1. Correlation analysis showed that there were strong positive correlations between iron content, capitate glandular trichome density, CbHO-1 gene expression, and blinin content. This study explored the effects of ferrous iron on the physiology and biochemistry of C. blinii, greatly improving our understanding of the mechanism of iron tolerance in C. blinii.


Assuntos
Conyza , Ferro , Tricomas , Regulação para Cima , China , Conyza/anatomia & histologia , Conyza/efeitos dos fármacos , Conyza/genética , Conyza/metabolismo , Ferro/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Tricomas/efeitos dos fármacos , Tricomas/genética , Tricomas/metabolismo , Regulação para Cima/efeitos dos fármacos
5.
BMC Genomics ; 20(1): 871, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31730445

RESUMO

BACKGROUND: Heat shock transcription factor (Hsfs) is widely found in eukaryotes and prokaryotes. Hsfs can not only help organisms resist high temperature, but also participate in the regulation of plant growth and development (such as involved in the regulation of seed maturity and affects the root length of plants). The Hsf gene was first isolated from yeast and then gradually found in plants and sequenced, such as Arabidopsis thaliana, rice, maize. Tartary buckwheat is a rutin-rich crop, and its nutritional value and medicinal value are receiving more and more attention. However, there are few studies on the Hsf genes in Tartary buckwheat. With the whole genome sequence of Tartary buckwheat, we can effectively study the Hsf gene family in Tartary buckwheat. RESULTS: According to the study, 29 Hsf genes of Tartary buckwheat (FtHsf) were identified and renamed according to location of FtHsf genes on chromosome after removing a redundant gene. Therefore, only 29 FtHsf genes truly had the functional characteristics of the FtHsf family. The 29 FtHsf genes were located on 8 chromosomes of Tartary buckwheat, and we found gene duplication events in the FtHsf gene family, which may promote the expansion of the FtHsf gene family. Then, the motif compositions and the evolutionary relationship of FtHsf proteins and the gene structures, cis-acting elements in the promoter, synteny analysis of FtHsf genes were discussed in detail. What's more, we found that the transcription levels of FtHsf in different tissues and fruit development stages were significantly different by quantitative real-time PCR (qRT-PCR), implied that FtHsf may differ in function. CONCLUSIONS: In this study, only 29 Hsf genes were identified in Tartary buckwheat. Meanwhile, we also classified the FtHsf genes, and studied their structure, evolutionary relationship and the expression pattern. This series of studies has certain reference value for the study of the specific functional characteristics of Tartary buckwheat Hsf genes and to improve the yield and quality of Tartary buckwheat in the future.


Assuntos
Fagopyrum/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Fatores de Transcrição de Choque Térmico/genética , Filogenia , Proteínas de Plantas/genética , Sequência de Aminoácidos , Evolução Biológica , Mapeamento Cromossômico , Fagopyrum/classificação , Fagopyrum/crescimento & desenvolvimento , Fagopyrum/metabolismo , Duplicação Gênica , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição de Choque Térmico/classificação , Fatores de Transcrição de Choque Térmico/metabolismo , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Sintenia , Transcrição Gênica
6.
BMC Genomics ; 20(1): 113, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30727951

RESUMO

BACKGROUND: The NAC (NAM, ATAF1/2, and CUC2) transcription factor family represents a group of large plant-specific transcriptional regulators, participating in plant development and response to external stress. However, there is no comprehensive study on the NAC genes of Tartary buckwheat (Fagopyrum tataricum), a large group of extensively cultivated medicinal and edible plants. The recently published Tartary buckwheat genome permits us to explore all the FtNAC genes on a genome-wide basis. RESULTS: In the present study, 80 NAC (FtNAC) genes of Tartary buckwheat were obtained and named uniformly according to their distribution on chromosomes. Phylogenetic analysis of NAC proteins in both Tartary buckwheat and Arabidopsis showed that the FtNAC proteins are widely distributed in 15 subgroups with one subgroup unclassified. Gene structure analysis found that multitudinous FtNAC genes contained three exons, indicating that the structural diversity in Tartary buckwheat NAC genes is relatively low. Some duplication genes of FtNAC have a conserved structure that was different from others, indicating that these genes may have a variety of functions. By observing gene expression, we found that FtNAC genes showed abundant differences in expression levels in various tissues and at different stages of fruit development. CONCLUSIONS: In this research, 80 NAC genes were identified in Tartary buckwheat, and their phylogenetic relationships, gene structures, duplication, global expression and potential roles in Tartary buckwheat development were studied. Comprehensive analysis will be useful for a follow-up study of functional characteristics of FtNAC genes and for the development of high-quality Tartary buckwheat varieties.


Assuntos
Evolução Molecular , Fagopyrum/metabolismo , Regulação da Expressão Gênica de Plantas , Família Multigênica/genética , Análise de Sequência de DNA , Fatores de Transcrição/genética , Fagopyrum/genética , Fagopyrum/fisiologia , Perfilação da Expressão Gênica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiologia , Análise de Sequência de RNA , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia
7.
BMC Genomics ; 20(1): 483, 2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-31185893

RESUMO

BACKGROUND: In reported plants, the bZIP family is one of the largest transcription factor families. bZIP genes play roles in the light signal, seed maturation, flower development, cell elongation, seed accumulation protein, abiotic and biological stress and other biological processes. While, no detailed identification and genome-wide analysis of bZIP family genes in Fagopyum talaricum (tartary buckwheat) has previously been published. The recently reported genome sequence of tartary buckwheat provides theoretical basis for us to study and discuss the characteristics and expression of bZIP genes in tartary buckwheat based on the whole genome. RESULTS: In this study, 96 FtbZIP genes named from FtbZIP1 to FtbZIP96 were identified and divided into 11 subfamilies according to their genetic relationship with 70 bZIPs of A. thaliana. FtbZIP genes are not evenly distributed on the chromosomes, and we found tandem and segmental duplication events of FtbZIP genes on 8 tartary buckwheat chromosomes. According to the results of gene and motif composition, FtbZIP located in the same group contained analogous intron/exon organizations and motif composition. By qRT-PCR, we quantified the expression of FtbZIP members in stem, root, leaf, fruit, and flower and during fruit development. Exogenous ABA treatment increased the weight of tartary buckwheat fruit and changed the expressions of FtbZIP genes in group A. CONCLUSIONS: Through our study, we identified 96 FtbZIP genes in tartary buckwheat and synthetically further analyzed the structure composition, evolution analysis and expression pattern of FtbZIP proteins. The expression pattern indicates that FtbZIP is important in the course of plant growth and development of tartary buckwheat. Through comprehensively analyzing fruit weight and FtbZIP genes expression after ABA treatment and endogenous ABA content of tartary buckwheat fruit, ABA may regulate downstream gene expression by regulating the expression of FtPinG0003523300.01 and FtPinG0003196200.01, thus indirectly affecting the fruit development of tartary buckwheat. This will help us to further study the function of FtbZIP genes in the tartary buckwheat growth and improve the fruit of tartary buckwheat.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Evolução Molecular , Fagopyrum/genética , Perfilação da Expressão Gênica , Genômica , Filogenia , Cromossomos de Plantas/genética , Sequência Conservada , Fagopyrum/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento , Duplicação Gênica , Genoma de Planta/genética , Motivos de Nucleotídeos , Especificidade de Órgãos
8.
BMC Plant Biol ; 19(1): 299, 2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31286919

RESUMO

BACKGROUND: SPL (SQUAMOSA promoter binding protein-like) is a class of plant-specific transcription factors that play important roles in many growth and developmental processes, including shoot and inflorescence branching, embryonic development, signal transduction, leaf initiation, phase transition, and flower and fruit development. The SPL gene family has been identified and characterized in many species but has not been well studied in tartary buckwheat, which is an important edible and medicinal crop. RESULTS: In this study, 24 Fagopyrum tataricum SPL (FtSPL) genes were identified and renamed according to the chromosomal distribution of the FtSPL genes. According to the amino acid sequence of the SBP domain and gene structure, the SPL genes were divided into eight groups (group I to group VII) by phylogenetic tree analysis. A total of 10 motifs were detected in the tartary buckwheat SPL genes. The expression patterns of 23 SPL genes in different tissues and fruits at different developmental stages (green fruit stage, discoloration stage and initial maturity stage) were determined by quantitative real-time polymerase chain reaction (qRT-PCR). CONCLUSIONS: The tartary buckwheat genome contained 24 SPL genes, and most of the genes were expressed in different tissues. qRT-PCR showed that FtSPLs played important roles in the growth and development of tartary buckwheat, and genes that might regulate flower and fruit development were preliminarily identified. This work provides a comprehensive understanding of the SBP-box gene family in tartary buckwheat and lays a significant foundation for further studies on the functional characteristics of FtSPL genes and improvement of tartary buckwheat crops.


Assuntos
Fagopyrum/genética , Estudo de Associação Genômica Ampla , Família Multigênica , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Fagopyrum/crescimento & desenvolvimento , Fagopyrum/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Filogenia , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição/metabolismo
9.
BMC Plant Biol ; 19(1): 344, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31390980

RESUMO

BACKGROUND: In the study, the trihelix family, also referred to as GT factors, is one of the transcription factor families. Trihelix genes play roles in the light response, seed maturation, leaf development, abiotic and biological stress and other biological activities. However, the trihelix family in tartary buckwheat (Fagopyrum tataricum), an important usable medicinal crop, has not yet been thoroughly studied. The genome of tartary buckwheat has recently been reported and provides a theoretical basis for our research on the characteristics and expression of trihelix genes in tartary buckwheat based at the whole level. RESULTS: In the present study, a total of 31 FtTH genes were identified based on the buckwheat genome. They were named from FtTH1 to FtTH31 and grouped into 5 groups (GT-1, GT-2, SH4, GTγ and SIP1). FtTH genes are not evenly distributed on the chromosomes, and we found segmental duplication events of FtTH genes on tartary buckwheat chromosomes. According to the results of gene and motif composition, FtTH located in the same group contained analogous intron/exon organizations and motif organizations. qRT-PCR showed that FtTH family members have multiple expression patterns in stems, roots, leaves, fruits, and flowers and during fruit development. CONCLUSIONS: Through our study, we identified 31 FtTH genes in tartary buckwheat and synthetically further analyzed the evolution and expression pattern of FtTH proteins. The structure and motif organizations of most genes are conserved in each subfamily, suggesting that they may be functionally conserved. The FtTH characteristics of the gene expression patterns indicate functional diversity in the time and space in the tartary buckwheat life process. Based on the discussion and analysis of FtTH gene function, we screened some genes closely related to the growth and development of tartary buckwheat. This will help us to further study the function of FtTH genes through experimental exploration in tartary buckwheat growth and improve the fruit of tartary buckwheat.


Assuntos
Fagopyrum/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Mapeamento Cromossômico , Evolução Molecular , Fagopyrum/metabolismo , Duplicação Gênica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genoma de Planta , Filogenia , Proteínas de Plantas/genética , Fatores de Transcrição/genética
10.
BMC Plant Biol ; 19(1): 342, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31387526

RESUMO

BACKGROUND: GRAS are plant-specific transcription factors that play important roles in plant growth and development. Although the GRAS gene family has been studied in many plants, there has been little research on the GRAS genes of Tartary buckwheat (Fagopyrum tataricum), which is an important crop rich in rutin. The recently published whole genome sequence of Tartary buckwheat allows us to study the characteristics and expression patterns of the GRAS gene family in Tartary buckwheat at the genome-wide level. RESULTS: In this study, 47 GRAS genes of Tartary buckwheat were identified and divided into 10 subfamilies: LISCL, HAM, DELLA, SCR, PAT1, SCL4/7, LAS, SHR, SCL3, and DLT. FtGRAS genes were unevenly distributed on 8 chromosomes, and members of the same subfamily contained similar gene structures and motif compositions. Some FtGRAS genes may have been produced by gene duplications; tandem duplication contributed more to the expansion of the GRAS gene family in Tartary buckwheat. Real-time PCR showed that the transcription levels of FtGRAS were significantly different in different tissues and fruit development stages, implying that FtGRAS might have different functions. Furthermore, an increase in fruit weight was induced by exogenous paclobutrazol, and the transcription level of the DELLA subfamily member FtGRAS22 was significantly upregulated during the whole fruit development stage. Therefore, FtGRAS22 may be a potential target for molecular breeding or genetic editing. CONCLUSIONS: Collectively, this systematic analysis lays a foundation for further study of the functional characteristics of GRAS genes and for the improvement of Tartary buckwheat crops.


Assuntos
Fagopyrum/genética , Proteínas de Plantas/fisiologia , Fatores de Transcrição/fisiologia , Fagopyrum/crescimento & desenvolvimento , Fagopyrum/metabolismo , Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Genoma de Planta , Família Multigênica , Filogenia , Desenvolvimento Vegetal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sintenia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Triazóis/farmacologia
11.
BMC Plant Biol ; 19(1): 84, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30786863

RESUMO

BACKGROUND: AP2/ERF transcription factors perform indispensable functions in various biological processes, such as plant growth, development, biotic and abiotic stresses responses. The AP2/ERF transcription factor family has been identified in many plants, and several AP2/ERF transcription factors from Arabidopsis thaliana (A. thaliana) have been functionally characterized. However, little research has been conducted on the AP2/ERF genes of tartary buckwheat (Fagopyum tataricum), which is an important edible and medicinal crop. The recently published whole genome sequence of tartary buckwheat allowed us to study the tissue and expression profiles of AP2/ERF genes in tartary buckwheat on a genome-wide basis. RESULTS: In this study, 134 AP2/ERF genes of tartary buckwheat (FtAP2/ERF) were identified and renamed according to the chromosomal distribution of the FtAP2/ERF genes. According to the number conserved domains and gene structure, the AP2/ERF genes were divided into three subfamilies by phylogenetic tree analysis, namely, AP2 (15 members), ERF (116 members) and RAV (3 members). A total of 10 motifs were detected in tartary buckwheat AP2/ERF genes, and some of the unique motifs were found to be important for the function of AP2/ERF genes. CONCLUSION: A comprehensive analysis of AP2/ERF gene expression patterns in different tissues and fruit development stages by quantitative real-time PCR (qRT-PCR) showed that they played an important role in the growth and development of tartary buckwheat, and genes that might regulate flower and fruit development were preliminarily identified. This systematic analysis establishes a foundation for further studies of the functional characteristics of FtAP2/ERF genes and improvement of tartary buckwheat crops.


Assuntos
Fagopyrum/genética , Genes de Plantas/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Mapeamento Cromossômico , Regulação da Expressão Gênica de Plantas , Genes de Plantas/fisiologia , Genoma de Planta/genética , Filogenia , Proteínas de Plantas/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Alinhamento de Sequência , Fatores de Transcrição/fisiologia
12.
BMC Plant Biol ; 19(1): 248, 2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-31185913

RESUMO

BACKGROUND: ZF-HD is a family of genes that play an important role in plant growth, development, some studies have found that after overexpression AtZHD1 in Arabidopsis thaliana, florescence advance, the seeds get bigger and the life span of seeds is prolonged, moreover, ZF-HD genes are also participate in responding to adversity stress. The whole genome of the ZF-HD gene family has been studied in several model plants, such as Arabidopsis thaliana and rice. However, there has been little research on the ZF-HD genes in Tartary buckwheat (Fagopyrum tataricum), which is an important edible and medicinal crop. The recently published whole genome sequence of Tartary buckwheat allows us to study the tissue and expression profiles of the ZF-HD gene family in Tartary buckwheat on a genome-wide basis. RESULTS: In this study, the whole genome and expression profile of the ZF-HD gene family were analyzed for the first time in Tartary buckwheat. We identified 20 FtZF-HD genes and divided them into MIF and ZHD subfamilies according to phylogeny. The ZHD genes were divided into 5 subfamilies. Twenty FtZF-HD genes were distributed on 7 chromosomes, and almost all the genes had no introns. We detected seven pairs of chromosomes with fragment repeats, but no tandem repeats were detected. In different tissues and at different fruit development stages, the FtZF-HD genes obtained by a real-time quantitative PCR analysis showed obvious expression patterns. CONCLUSIONS: In this study, 20 FtZF-HD genes were identified in Tartary buckwheat, and the structures, evolution and expression patterns of the proteins were studied. Our findings provide a valuable basis for further analysis of the biological function of the ZF-HD gene family. Our study also laid a foundation for the improvement of Tartary buckwheat crops.


Assuntos
Fagopyrum/genética , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Família Multigênica , Proteínas de Plantas/genética , Fagopyrum/metabolismo , Perfilação da Expressão Gênica , Filogenia , Proteínas de Plantas/metabolismo
13.
Planta ; 249(5): 1301-1318, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30617544

RESUMO

MAIN CONCLUSION: Genome-wide identification, expression analysis and potential functional characterization of previously uncharacterized MADS family of tartary buckwheat, emphasized the importance of this gene family in plant growth and development. The MADS transcription factor is a key regulatory factor in the development of most plants. The MADS gene in plants controls all aspects of tissue and organ growth and reproduction and can be used to regulate plant seed cracking. However, there has been little research on the MADS genes of tartary buckwheat (Fagopyrum tataricum), which is an important edible and medicinal crop. The recently published whole genome sequence of tartary buckwheat allows us to study the tissue and expression profiles of the MADS gene in tartary buckwheat at a genome-wide level. In this study, 65 MADS genes of tartary buckwheat were identified and renamed according to the chromosomal distribution of the FtMADS genes. Here, we provide a complete overview of the gene structure, gene expression, genomic mapping, protein motif organization, and phylogenetic relationships of each member of the gene family. According to the phylogenetic relationship of MADS genes, the transcription factor family was divided into two subfamilies, the M subfamily (28 genes) and the MIKC subfamily (37 genes). The results showed that the FtMADS genes belonged to related sister pairs and the chromosomal map showed that the replication of FtMADSs was related to the replication of chromosome blocks. In different tissues and at different fruit development stages, the FtMADS genes obtained by real-time quantitative PCR (RT-qPCR) showed obvious expression patterns. A comprehensive analysis of the MADS genes in tartary buckwheat was conducted. Through systematic analysis, the potential genes that may regulate the growth and development of tartary buckwheat and the genes that may regulate the easy dehulling of tartary buckwheat fruit were screened, which laid a solid foundation for improving the quality of tartary buckwheat.


Assuntos
Fagopyrum/metabolismo , Frutas/metabolismo , Proteínas de Plantas/metabolismo , Fagopyrum/genética , Frutas/genética , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética
14.
BMC Genomics ; 19(1): 648, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-30170551

RESUMO

BACKGROUND: Tartary buckwheat (Fagopyrum tataricum Gaertn.) is a widely cultivated medicinal and edible crop with excellent economic and nutritional value. The development of tartary buckwheat seeds is a very complex process involving many expression-dependent physiological changes and regulation of a large number of genes and phytohormones. In recent years, the gene regulatory network governing the physiological changes occurring during seed development have received little attention. RESULTS: Here, we characterized the seed development of tartary buckwheat using light and electron microscopy and measured phytohormone and nutrient accumulation by using high performance liquid chromatography (HPLC) and by profiling the expression of key genes using RNA sequencing with the support of the tartary buckwheat genome. We first divided the development of tartary buckwheat seed into five stages that include complex changes in development, morphology, physiology and phytohormone levels. At the same time, the contents of phytohormones (gibberellin, indole-3-acetic acid, abscisic acid, and zeatin) and nutrients (rutin, starch, total proteins and soluble sugars) at five stages were determined, and their accumulation patterns in the development of tartary buckwheat seeds were analyzed. Second, gene expression patterns of tartary buckwheat samples were compared during three seed developmental stages (13, 19, and 25 days postanthesis, DPA), and 9 765 differentially expressed genes (DEGs) were identified. We analyzed the overlapping DEGs in different sample combinations and measured 665 DEGs in the three samples. Furthermore, expression patterns of DEGs related to phytohormones, flavonoids, starch, and storage proteins were analyzed. Third, we noted the correlation between the trait (physiological changes, nutrient changes) and metabolites during seed development, and discussed the key genes that might be involved in the synthesis and degradation of each of them. CONCLUSION: We provided abundant genomic resources for tartary buckwheat and Polygonaceae communities and revealed novel molecular insights into the correlations between the physiological changes and seed development of tartary buckwheat.


Assuntos
Fagopyrum/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Fagopyrum/genética , Fagopyrum/fisiologia , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Reguladores de Crescimento de Plantas/metabolismo , Sementes/genética
15.
Int J Mol Sci ; 19(9)2018 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-30217096

RESUMO

Tartary buckwheat is a type of cultivated medicinal and edible crop with good economic and nutritional value. Knowledge of the final fruit size of buckwheat is critical to its yield increase. In this study, the fruit development of two species of Tartary buckwheat in the Polygonaceae was analyzed. During fruit development, the size/weight, the contents of auxin (AUX)/abscisic acid (ABA), the number of cells, and the changes of embryo were measured and observed; and the two fruit materials were compared to determine the related mechanisms that affected fruit size and the potential factors that regulated the final fruit size. The early events during embryogenesis greatly influenced the final fruit size, and the difference in fruit growth was primarily due to the difference in the number of cells, implicating the effect of cell division rate. Based on our observations and recent reports, the balance of AUX and ABA might be the key factor that regulated the cell division rate. They induced the response of auxin response factor 2 (FtARF2) and downstream small auxin upstream RNA (FtSAURs) through hormone signaling pathway to regulate the fruit size of Tartary buckwheat. Further, through the induction of fruit expansion by exogenous auxin, FtARF2b was significantly downregulated. The FtARF2b is a potential target for molecular breeding or gene editing.


Assuntos
Ácido Abscísico/metabolismo , Fagopyrum/metabolismo , Frutas/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/metabolismo , Divisão Celular/fisiologia , Polygonaceae/metabolismo
16.
Int J Mol Sci ; 19(11)2018 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-30423920

RESUMO

Auxin signaling plays an important role in plant growth and development. It responds to various developmental and environmental events, such as embryogenesis, organogenesis, shoot elongation, tropical growth, lateral root formation, flower and fruit development, tissue and organ architecture, and vascular differentiation. However, there has been little research on the Auxin Response Factor (ARF) genes of tartary buckwheat (Fagopyrum tataricum), an important edible and medicinal crop. The recent publication of the whole-genome sequence of tartary buckwheat enables us to study the tissue and expression profile of the FtARF gene on a genome-wide basis. In this study, 20 ARF (FtARF) genes were identified and renamed according to the chromosomal distribution of the FtARF genes. The results showed that the FtARF genes belonged to the related sister pair, and the chromosomal map showed that the duplication of FtARFs was related to the duplication of the chromosome blocks. The duplication of some FtARF genes shows conserved intron/exon structure, which is different from other genes, suggesting that the function of these genes may be diverse. Real-time quantitative PCR analysis exhibited distinct expression patterns of FtARF genes in various tissues and in response to exogenous auxin during fruit development. In this study, 20 FtARF genes were identified, and the structure, evolution, and expression patterns of the proteins were studied. This systematic analysis laid a foundation for the further study of the functional characteristics of the ARF genes and for the improvement of tartary buckwheat crops.


Assuntos
Fagopyrum/genética , Genes de Plantas , Genoma de Planta , Ácidos Indolacéticos/metabolismo , Família Multigênica , Proteínas de Plantas/genética , Cromossomos de Plantas/genética , Evolução Molecular , Fagopyrum/efeitos dos fármacos , Frutas/genética , Frutas/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ácidos Indolacéticos/farmacologia , Motivos de Nucleotídeos/genética , Especificidade de Órgãos/genética , Filogenia , Proteínas de Plantas/metabolismo , Especificidade da Espécie , Sintenia/genética
17.
Front Microbiol ; 15: 1360988, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38559356

RESUMO

Tartary buckwheat (Fagopyrum tataricum) is a significant medicinal crop, with flavonoids serving as a crucial measure of its quality. Presently, the artificial cultivation of Tartary buckwheat yields low results, and the quality varies across different origins. Therefore, it is imperative to identify an effective method to enhance the yield and quality of buckwheat. Endophytic fungi reside within plants and form a mutually beneficial symbiotic relationship, aiding plants in nutrient absorption, promoting host growth, and improving secondary metabolites akin to the host. In this study, high-throughput sequencing technology was employed to assess the diversity of endophytic fungi in Tartary buckwheat. Subsequently, a correlation analysis was performed between fungi and metabolites, revealing potential increases in flavonoid content due to endophytic fungi such as Bipolaris, Hymenula, and Colletotrichum. Additionally, a correlation analysis between fungi and phenotypic traits unveiled the potential influence of endophytic fungi such as Bipolaris, Buckleyzyma, and Trichosporon on the phenotypic traits of Tartary buckwheat. Notably, the endophytic fungi of the Bipolaris genus exhibited the potential to elevate the content of Tartary buckwheat metabolites and enhance crop growth. Consequently, this study successfully identified the resources of endophytic fungi in Tartary buckwheat, explored potential functional endophytic fungi, and laid a scientific foundation for future implementation of biological fertilizers in improving the quality and growth of Tartary buckwheat.

18.
J Fungi (Basel) ; 9(11)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37998919

RESUMO

The main objective of this study was to investigate the influence of Serendipita indica on the growth of Tartary buckwheat plants. This study highlighted that the roots of Tartary buckwheat can be colonized by S. indica and that this fungal endophyte improved plants height, fresh weight, dry weight, and grain yield. In the meantime, the colonization of S. indica in Tartary buckwheat leaves resulted in elevated levels of photosynthesis, plant hormone content, antioxidant enzyme activity, proline content, chlorophyll content, soluble sugars, and protein content. Additionally, the introduction of S. indica to Tartary buckwheat roots led to a substantial rise in the levels of flavonoids and phenols found in the leaves and seeds of Tartary buckwheat. In addition, S. indica colonization reduced the content of malondialdehyde and hydrogen peroxide when compared to non-colonized plants. Importantly, the drought tolerance of Tartary buckwheat plants is increased, which benefits from physiology and bio-chemical changes in plants after S. indica colonized. In conclusion, we have shown that S. indica can improve systematic resistance and promote the growth of Tartary buckwheat by enhancing the photosynthetic capacity of Tartary buckwheat, inducing the production of IAA, increasing the content of secondary metabolites such as total phenols and total flavonoids, and improving the antioxidant enzyme activity of the plant.

19.
Microorganisms ; 11(11)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-38004690

RESUMO

Bacterial growth, under laboratory conditions or in a natural environment, goes through different growth phases. Some gene expressions are regulated with respect to the growth phase, which allows bacteria to adapt to changing conditions. Among them, many gene transcriptions are controlled by RpoHI or RpoHII in Rhodobacter sphaeroides. In a previous study, it was proven that the alternative sigma factors, RpoE, RpoHI, and RpoHII, are the major regulators of oxidative stress. Moreover, the growth of bacteria reached a stationary phase, and following the outgrowth, rpoE, rpoHI, and rpoHII mRNAs increased with respect to the growth phase. In this study, we demonstrated the regulatory function of alternative sigma factors in the rsp_0557 gene. The gene rsp_0557 is expressed with respect to the growth phase and belongs to the RpoHI/RpoHII regulons. Reporter assays showed that the antisigma factor ChrR turns on or over the RpoE activity to regulate rsp_0557 expression across the growth phase. In the exponential phase, RpoHII and sRNA Pos19 regulate the expression of rsp_0557 to an appropriate level under RpoE control. In the stationary phase, RpoHI and Pos19 stabilize the transcription of rsp_0557 at a high level. During outgrowth, RpoHI negatively regulates the transcription of rsp_0557. Taken together, our data indicate that these regulators are recruited by cells to adapt to or survive under different conditions throughout the growth phase. However, they still did not display all of the regulators involved in growth phase-dependent regulation. More research is still needed to learn more about the interaction between the regulators and the process of adapting to changed growth conditions and environments.

20.
Life (Basel) ; 13(2)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36836728

RESUMO

Under dry-hot valley climates, Conyza blinii (also known as Jin Long Dan Cao), suffers from nocturnal low-temperature stress (LTS) during winter. Here, to investigate the biological significance of terpenoid metabolism during LTS adaptation, the growth state and terpenoid content of C. blinii under different LTS were detected, and analyzed with the changes in phytohormone. When subjected to LTS, the results demonstrated that the growth activity of C. blinii was severely suppressed, while the metabolism activity was smoothly stimulated. Meanwhile, the fluctuation in phytohormone content exhibited three different physiological stages, which are considered the stress response, signal amplification, and stress adaptation. Furthermore, drastic changes occurred in the distribution and accumulation of terpenoids, such as blinin (diterpenoids from MEP) accumulating specifically in leaves and oleanolic acid (triterpenoids from MVA) accumulating evenly and globally. The gene expression of MEP and MVA signal transduction pathways also changes under LTS. In addition, a pharmacological study showed that it may be the ABA-SA crosstalk driven by the LTS signal, that balances the metabolic flux in the MVA and MEP pathways in an individual manner. In summary, this study reveals the different standpoints of ABA and SA, and provides a research foundation for the optimization of the regulation of terpenoid metabolic flux within C. blinii.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA