Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Labelled Comp Radiopharm ; 62(3): 118-125, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30592529

RESUMO

Synthesis of [15 N4 ] purine labeled cytokinine glycosides derived from zeatins and topolins containing a 9-ß-d, 7-ß-d-glucopyranosyl, or 9-ß-d-ribofuranosyl group is described. These N6 -substituted adenine derivatives are intended as internal analytic standards for phytohormone analysis. All labeled compounds were prepared from 6-chloro[15 N4 ]purine (1). The equilibrium reaction of 1 with acetobromo-α-d-glucose gave isomeric 7-ß-d (3) and 9-ß-d (4) chloro glucosyl precursors, which were treated with the corresponding amines to get desired labeled cytokinin 7-ß-d (6) and 9-ß-d (5) glucopyranosides. Cytokinins containing 9-ß-d-ribofuranosyl group (8) were obtained by direct enzymatic transglycosylation reaction of cytokinins (7) prepared from 6-chloro[15 N4 ] purine (1).


Assuntos
Adenina/análogos & derivados , Zeatina/análogos & derivados , Isótopos de Nitrogênio/química
2.
Plant J ; 89(5): 1065-1075, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27943492

RESUMO

Cytokinins (CKs) are pivotal plant hormones that have crucial roles in plant growth and development. However, their isolation and quantification are usually challenging because of their extremely low levels in plant tissues (pmol g-1 fresh weight). We have developed a simple microscale magnetic immunoaffinity-based method for selective one-step isolation of CKs from very small amounts of plant tissue (less than 0.1 mg fresh weight). The capacity of the immunosorbent and the effect of the complex plant matrix on the yield of the rapid one-step purification were tested using a wide range of CK concentrations. The total recovery range of the new microscale isolation procedure was found to be 30-80% depending on individual CKs. Immunoaffinity extraction using group-specific monoclonal CK antibodies immobilized onto magnetic microparticles was combined with a highly sensitive ultrafast mass spectrometry-based method with a detection limit close to one attomole. This combined approach allowed metabolic profiling of a wide range of naturally occurring CKs (bases, ribosides and N9 -glucosides) in 1.0-mm sections of the Arabidopsis thaliana root meristematic zone. The magnetic immunoaffinity separation method was shown to be a simple and extremely fast procedure requiring minimal amounts of plant tissue.


Assuntos
Arabidopsis/química , Citocininas/isolamento & purificação , Nanopartículas de Magnetita , Reguladores de Crescimento de Plantas/isolamento & purificação , Raízes de Plantas/química , Citocininas/química , Reguladores de Crescimento de Plantas/química
3.
Talanta ; 277: 126358, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38879944

RESUMO

Ambient ionization mass spectrometry allows for analysis of samples in their natural state, i.e., with no sample pre-treatment. It can be viewed as a fast, simple, and economical analysis, but its main disadvantages include a lower analytical performance due to the presence of complex sample matrix and the lack of chromatographic separation prior to the introduction of the sample into the mass spectrometer. Here we present an application of two ambient ionization mass spectrometry techniques, i.e., Desorption Atmospheric Pressure Photoionization and Dielectric Barrier Discharge Ionization, for the analysis of known Selective Androgen Receptor Modulators, which represent common compounds of abuse in professional and semiprofessional sport. Eight real samples of illegal food supplements, seized by the local law enforcement, were used to test the performance of the ambient mass spectrometry and the results were validated against a newly developed targeted LC-UV-MS/MS method performed in multiple reaction monitoring mode with an external calibration for each analyte. In order to decide whether or not the compound can be declared as present, we proposed a system of rules for the interpretation of the obtained spectra. The criteria are based on mass spectrum matching (5-10 ppm accuracy from the theoretical exact mass and a correct isotopic pattern), duration of the mass signal (three or five consecutive scans, depending on the instrumentation used), and intensity above the background noise (threefold increase in intensity and absolute intensity above 5E4 or 1E5, depending on the instrumentation). When applying these criteria, good agreement was found between the tested methods. Ambient ionization techniques were effective at detecting SARMs at pharmacologically relevant doses, i.e., approximately above 1 mg per capsule, although they may fail to detect lower levels or isomeric species. It is demonstrated that when adhering to a set of clear and consistent rules, ambient mass spectrometry can be employed as a qualitative technique for the screening of illegal SARMs with sufficient confidence and without the necessity to perform a regular LC-MS analysis.

4.
R Soc Open Sci ; 5(11): 181322, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30564417

RESUMO

Cytokinins (CKs) and their metabolites and derivatives are essential for cell division, plant growth regulation and development. They are typically found at minute concentrations in plant tissues containing very complicated biological matrices. Therefore, defined standards labelled with stable isotopes are required for precise metabolic profiling and quantification of CKs, as well as in vivo elucidation of CK biosynthesis in various plant species. In this work, 11 [15N]-labelled C6-purine derivatives were prepared, among them 5 aromatic (4, 5, 6, 7, 8) and 3 isoprenoid (9, 10, 11) CKs. Compared to current methods, optimized syntheses of 6-amino-9H-[15N5]-purine (adenine) and 6-chloro-9H-[15N4]-purine (6-chloropurine) were performed to achieve more effective, selective and generally easier approaches. The chemical identity and purity of prepared compounds were confirmed by physico-chemical analyses (TLC; HRMS; HPLC-MS; 1H, 13C, 15N NMR). The presented approach is applicable for the synthesis of any other desired [15N4]-labelled C6-substituted purine derivatives.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA