Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Comput Neurosci ; 13(3): 167-86, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12226559

RESUMO

Direction selectivity (DS) of simple cells in the primary visual cortex was recently suggested to arise from short-term synaptic depression in thalamocortical afferents (Chance F, Nelson S, Abbott L (1998), J. Neuroscience 18(12): 4785-4799). In the model, two groups of afferents with spatially displaced receptive fields project through either depressing and non-depressing synapses onto the V1 cell. The degree of synaptic depression determines the temporal phase advance of the response to drifting gratings. We show that the spatial displacement and the appropriate degree of synaptic depression required for DS can develop within an unbiased input scenario by means of temporally asymmetric spike-timing dependent plasticity (STDP) which modifies both the synaptic strength and the degree of synaptic depression. Moving stimuli of random velocities and directions break any initial receptive field symmetry and produce DS. Frequency tuning curves and subthreshold membrane potentials akin to those measured for non-directional simple cells are thereby changed into those measured for directional cells. If STDP is such that down-regulation dominates up-regulation the overall synaptic strength adapts in a self-organizing way such that eventually the postsynaptic response for the non-preferred direction becomes subthreshold. To prevent unlearning of the acquired DS by randomly changing stimulus directions an additional learning threshold is necessary. To further protect the development of the simple cell properties against noise in the stimulus, asynchronous and irregular synaptic inputs are required.


Assuntos
Modelos Neurológicos , Plasticidade Neuronal , Sinapses/fisiologia , Córtex Visual/fisiologia , Vias Aferentes/fisiologia , Animais , Simulação por Computador , Aprendizagem
2.
J Comput Neurosci ; 14(2): 119-38, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12567013

RESUMO

In the companion paper we presented extended simulations showing that the recently observed spike-timing dependent synaptic plasticity can explain the development of simple cell direction selectivity (DS) when simultaneously modifying the synaptic strength and the degree of synaptic depression. Here we estimate the spatial shift of the simple cell receptive field (RF) induced by the long-term synaptic plasticity, and the temporal phase advance caused by the short-term synaptic depression in response to drifting grating stimuli. The analytical expressions for this spatial shift and temporal phase advance lead to a qualitative reproduction of the frequency tuning curves of non-directional and directional simple cells. In agreement with in vivo recordings, the acquired DS is strongest for test gratings with a temporal frequency around 1-4 Hz. In our model this best frequency is determined by the width of the learning function and the time course of depression, but not by the temporal frequency of the 'training' stimuli. The analysis further reveals the instability of the initially symmetric RF, and formally explains why direction selectivity develops from a non-directional cell in a natural, directionally unbiased stimulation scenario.


Assuntos
Modelos Neurológicos , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia , Animais , Potenciais Pós-Sinápticos Excitadores , Análise de Fourier , Corpos Geniculados/citologia , Corpos Geniculados/fisiologia , Aprendizagem/fisiologia , Percepção de Movimento/fisiologia , Estimulação Luminosa , Tempo de Reação , Retina/fisiologia , Percepção Espacial/fisiologia , Percepção do Tempo/fisiologia , Córtex Visual/anatomia & histologia , Córtex Visual/citologia , Córtex Visual/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA