Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Cell ; 162(6): 1286-98, 2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26359986

RESUMO

Heat causes protein misfolding and aggregation and, in eukaryotic cells, triggers aggregation of proteins and RNA into stress granules. We have carried out extensive proteomic studies to quantify heat-triggered aggregation and subsequent disaggregation in budding yeast, identifying >170 endogenous proteins aggregating within minutes of heat shock in multiple subcellular compartments. We demonstrate that these aggregated proteins are not misfolded and destined for degradation. Stable-isotope labeling reveals that even severely aggregated endogenous proteins are disaggregated without degradation during recovery from shock, contrasting with the rapid degradation observed for many exogenous thermolabile proteins. Although aggregation likely inactivates many cellular proteins, in the case of a heterotrimeric aminoacyl-tRNA synthetase complex, the aggregated proteins remain active with unaltered fidelity. We propose that most heat-induced aggregation of mature proteins reflects the operation of an adaptive, autoregulatory process of functionally significant aggregate assembly and disassembly that aids cellular adaptation to thermal stress.


Assuntos
Resposta ao Choque Térmico , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/fisiologia , Cicloeximida/farmacologia , Grânulos Citoplasmáticos/metabolismo , Agregados Proteicos , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
J Proteome Res ; 19(5): 1900-1912, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32163288

RESUMO

A Think-Tank Meeting was convened by the National Cancer Institute (NCI) to solicit experts' opinion on the development and application of multiomic single-cell analyses, and especially single-cell proteomics, to improve the development of a new generation of biomarkers for cancer risk, early detection, diagnosis, and prognosis as well as to discuss the discovery of new targets for prevention and therapy. It is anticipated that such markers and targets will be based on cellular, subcellular, molecular, and functional aberrations within the lesion and within individual cells. Single-cell proteomic data will be essential for the establishment of new tools with searchable and scalable features that include spatial and temporal cartographies of premalignant and malignant lesions. Challenges and potential solutions that were discussed included (i) The best way/s to analyze single-cells from fresh and preserved tissue; (ii) Detection and analysis of secreted molecules and from single cells, especially from a tissue slice; (iii) Detection of new, previously undocumented cell type/s in the premalignant and early stage cancer tissue microenvironment; (iv) Multiomic integration of data to support and inform proteomic measurements; (v) Subcellular organelles-identifying abnormal structure, function, distribution, and location within individual premalignant and malignant cells; (vi) How to improve the dynamic range of single-cell proteomic measurements for discovery of differentially expressed proteins and their post-translational modifications (PTM); (vii) The depth of coverage measured concurrently using single-cell techniques; (viii) Quantitation - absolute or semiquantitative? (ix) Single methodology or multiplexed combinations? (x) Application of analytical methods for identification of biologically significant subsets; (xi) Data visualization of N-dimensional data sets; (xii) How to construct intercellular signaling networks in individual cells within premalignant tumor microenvironments (TME); (xiii) Associations between intrinsic cellular processes and extrinsic stimuli; (xiv) How to predict cellular responses to stress-inducing stimuli; (xv) Identification of new markers for prediction of progression from precursor, benign, and localized lesions to invasive cancer, based on spatial and temporal changes within individual cells; (xvi) Identification of new targets for immunoprevention or immunotherapy-identification of neoantigens and surfactome of individual cells within a lesion.


Assuntos
Vacinas Anticâncer , Neoplasias , Biomarcadores , Biomarcadores Tumorais/genética , Imunoterapia , National Cancer Institute (U.S.) , Proteômica , Estados Unidos
3.
Nat Chem Biol ; 13(2): 174-180, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27918561

RESUMO

Proteomic detection of non-annotated microproteins indicates the translation of hundreds of small open reading frames (smORFs) in human cells, but whether these microproteins are functional or not is unknown. Here, we report the discovery and characterization of a 7-kDa human microprotein we named non-annotated P-body dissociating polypeptide (NoBody). NoBody interacts with mRNA decapping proteins, which remove the 5' cap from mRNAs to promote 5'-to-3' decay. Decapping proteins participate in mRNA turnover and nonsense-mediated decay (NMD). NoBody localizes to mRNA-decay-associated RNA-protein granules called P-bodies. Modulation of NoBody levels reveals that its abundance is anticorrelated with cellular P-body numbers and alters the steady-state levels of a cellular NMD substrate. These results implicate NoBody as a novel component of the mRNA decapping complex and demonstrate potential functionality of a newly discovered microprotein.


Assuntos
Proteínas de Transporte/metabolismo , Endorribonucleases/química , Endorribonucleases/metabolismo , RNA Mensageiro/metabolismo , Animais , Células COS , Células Cultivadas , Chlorocebus aethiops , Humanos , Capuzes de RNA/metabolismo , RNA Mensageiro/química , RNA Mensageiro/genética
4.
J Biol Chem ; 289(16): 10950-10957, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24610814

RESUMO

The recent discovery of numerous human short open reading frame (sORF)-encoded polypeptides (SEPs) has raised important questions about the functional roles of these molecules in cells. Here, we show that a 69-amino acid SEP, MRI-2, physically interacts with the Ku heterodimer to stimulate DNA double-strand break ligation via nonhomologous end joining. The characterization of MRI-2 suggests that this SEP may participate in DNA repair and underscores the potential of SEPs to serve important biological functions in mammalian cells.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades/fisiologia , DNA Helicases/metabolismo , Fases de Leitura Aberta/fisiologia , Linhagem Celular , DNA Helicases/genética , Humanos , Autoantígeno Ku
5.
Nat Chem Biol ; 9(1): 59-64, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23160002

RESUMO

The complete extent to which the human genome is translated into polypeptides is of fundamental importance. We report a peptidomic strategy to detect short open reading frame (sORF)-encoded polypeptides (SEPs) in human cells. We identify 90 SEPs, 86 of which are previously uncharacterized, which is the largest number of human SEPs ever reported. SEP abundances range from 10-1,000 molecules per cell, identical to abundances of known proteins. SEPs arise from sORFs in noncoding RNAs as well as multicistronic mRNAs, and many SEPs initiate with non-AUG start codons, indicating that noncanonical translation may be more widespread in mammals than previously thought. In addition, coding sORFs are present in a small fraction (8 out of 1,866) of long intergenic noncoding RNAs. Together, these results provide strong evidence that the human proteome is more complex than previously appreciated.


Assuntos
Fases de Leitura Aberta , Peptídeos/química , Proteoma , Códon , Humanos , RNA Mensageiro/genética
6.
J Proteome Res ; 13(3): 1757-65, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24490786

RESUMO

The existence of nonannotated protein-coding human short open reading frames (sORFs) has been revealed through the direct detection of their sORF-encoded polypeptide (SEP) products. The discovery of novel SEPs increases the size of the genome and the proteome and provides insights into the molecular biology of mammalian cells, such as the prevalent usage of non-AUG start codons. Through modifications of the existing SEP-discovery workflow, we discover an additional 195 SEPs in K562 cells and extend this methodology to identify novel human SEPs in additional cell lines and human tissue for a final tally of 237 new SEPs. These results continue to expand the human genome and proteome and demonstrate that SEPs are a ubiquitous class of nonannotated polypeptides that require further investigation.


Assuntos
Neoplasias da Mama/química , Genoma Humano , Fases de Leitura Aberta , Peptídeos/análise , Proteoma/análise , Neoplasias da Mama/genética , Linhagem Celular , Cromatografia Líquida , Códon de Iniciação/química , Códon de Iniciação/genética , Feminino , Humanos , Células K562 , Peptídeos/química , Biossíntese de Proteínas , Proteoma/química , Espectrometria de Massas em Tandem
7.
Proc Natl Acad Sci U S A ; 108(2): 680-5, 2011 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-21187411

RESUMO

Evolving lineages face a constant intracellular threat: most new coding sequence mutations destabilize the folding of the encoded protein. Misfolded proteins form insoluble aggregates and are hypothesized to be intrinsically cytotoxic. Here, we experimentally isolate a fitness cost caused by toxicity of misfolded proteins. We exclude other costs of protein misfolding, such as loss of functional protein or attenuation of growth-limiting protein synthesis resources, by comparing growth rates of budding yeast expressing folded or misfolded variants of a gratuitous protein, YFP, at equal levels. We quantify a fitness cost that increases with misfolded protein abundance, up to as much as a 3.2% growth rate reduction when misfolded YFP represents less than 0.1% of total cellular protein. Comparable experiments on variants of the yeast gene orotidine-5'-phosphate decarboxylase (URA3) produce similar results. Quantitative proteomic measurements reveal that, within the cell, misfolded YFP induces coordinated synthesis of interacting cytosolic chaperone proteins in the absence of a wider stress response, providing evidence for an evolved modular response to misfolded proteins in the cytosol. These results underscore the distinct and evolutionarily relevant molecular threat of protein misfolding, independent of protein function. Assuming that most misfolded proteins impose similar costs, yeast cells express almost all proteins at steady-state levels sufficient to expose their encoding genes to selection against misfolding, lending credibility to the recent suggestion that such selection imposes a global constraint on molecular evolution.


Assuntos
Citosol/química , Proteínas Fúngicas/química , Proteínas de Bactérias/química , Citosol/metabolismo , Evolução Molecular , Temperatura Alta , Proteínas Luminescentes/química , Chaperonas Moleculares/química , Desnaturação Proteica , Dobramento de Proteína , Proteínas/química , Proteômica/métodos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Transcrição Gênica
8.
J Biol Chem ; 284(44): 30016-23, 2009 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-19740738

RESUMO

Insulin stimulates the translocation of the glucose transporter GLUT4 from intracellular locations to the plasma membrane in adipose and muscle cells. Prior studies have shown that Akt phosphorylation of the Rab GTPase-activating protein, AS160 (160-kDa Akt substrate; also known as TBC1D4), triggers GLUT4 translocation, most likely by suppressing its Rab GTPase-activating protein activity. However, the regulation of a very similar protein, TBC1D1 (TBC domain family, member 1), which is mainly found in muscle, in insulin-stimulated GLUT4 translocation has been unclear. In the present study, we have identified likely Akt sites of insulin-stimulated phosphorylation of TBC1D1 in C2C12 myotubes. We show that a mutant of TBC1D1, in which several Akt sites have been converted to alanine, is considerably more inhibitory to insulin-stimulated GLUT4 translocation than wild-type TBC1D1. This result thus indicates that similar to AS160, Akt phosphorylation of TBC1D1 enables GLUT4 translocation. We also show that in addition to Akt activation, activation of the AMP-dependent protein kinase partially relieves the inhibition of GLUT4 translocation by TBC1D1. Finally, we show that the R125W variant of TBC1D1, which has been genetically associated with obesity, is equally inhibitory to insulin-stimulated GLUT4 translocation, as is wild-type TBC1D1, and that healthy and type 2 diabetic individuals express approximately the same level of TBC1D1 in biopsies of vastus lateralis muscle. In conclusion, phosphorylation of TBC1D1 is required for GLUT4 translocation. Thus, the regulation of TBC1D1 resembles that of its paralog, AS160.


Assuntos
Transportador de Glucose Tipo 4/metabolismo , Insulina/farmacologia , Proteínas Nucleares/metabolismo , Células 3T3-L1 , Animais , Diabetes Mellitus Tipo 2/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Camundongos , Músculo Esquelético/química , Proteínas Nucleares/análise , Fosforilação , Transporte Proteico/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo
9.
Chem Biol ; 15(8): 808-17, 2008 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-18721752

RESUMO

The first three members of the ErbB family of receptor tyrosine kinases activate a wide variety of signaling pathways and are frequently misregulated in cancer. Much less is known about ErbB4. Here we use tandem mass spectrometry to identify 19 sites of tyrosine phosphorylation on ErbB4, and protein microarrays to quantify biophysical interactions between these sites and virtually every SH2 and PTB domain encoded in the human genome. Our unbiased approach highlighted several previously unrecognized interactions and led to the finding that ErbB4 can recruit and activate STAT1. At a systems level, we found that ErbB4 is much more selective than the other ErbB receptors. This suggests that ErbB4 may enable ErbB2 and ErbB3 to signal independently of EGFR under normal conditions, and provides a possible explanation for the protective properties of ErbB4 in cancer.


Assuntos
Receptores ErbB/química , Receptores ErbB/metabolismo , Fosfotirosina/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Humanos , Dados de Sequência Molecular , Fosforilação , Análise Serial de Proteínas , Ligação Proteica , Receptor ErbB-2/metabolismo , Receptor ErbB-3/metabolismo , Receptor ErbB-4 , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais , Especificidade por Substrato
10.
Biochim Biophys Acta ; 1764(12): 1870-80, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17118724

RESUMO

Mass spectrometry has been an analytical tool of choice for glycosylation analysis of individual proteins. Over the last 5 years several previously and newly developed mass spectrometry methods have been extended to global glycoprotein studies. In this review we discuss the importance of these global studies and the advances that have been made in enrichment analyses and fragmentation methods. We also briefly describe relevant sample preparation methods that have been used for the analysis of a single glycoprotein that could be extrapolated to global studies. Finally this review covers aspects of improvements and advances on the instrument front which are important to future global glycoproteomic studies.


Assuntos
Glicosilação , Espectrometria de Massas/métodos , Acetilglucosamina/química , Cromatografia de Afinidade/métodos , Transporte de Elétrons , Elétrons , Cromatografia Gasosa-Espectrometria de Massas/métodos , Lectinas/isolamento & purificação , Processamento de Proteína Pós-Traducional
11.
J Am Soc Mass Spectrom ; 17(4): 576-585, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16503151

RESUMO

To explore the mechanism of electron capture dissociation (ECD) of linear peptides, a set of 16-mer peptides were synthesized with deuterium labeled on the alpha-carbon position of four glycines. The ECD spectra of these peptides showed that such peptides exhibit a preference for the radical to migrate to the alpha-carbon position on glycine via hydrogen (or deuterium) abstraction before the final cleavage and generation of the detected product ions. The data show c-type fragment ions, ions corresponding to the radical cation of the c-type fragments, c*, and they also show c*-1 peaks in the deuterated peptides only. The presence of the c*-1 peaks is best explained by radical-mediated scrambling of the deuterium atoms in the long-lived, metastable, radical intermediate complex formed by initial electron capture, followed by dissociation of the complex. These data suggest the presence of at least two mechanisms, one slow, one fast. The abundance of H* and -CO losses from the precursor ion changed upon deuterium labeling indicating the presence of a kinetic isotope effect, which suggests that the values reported here represent an underestimation of radical migration and H/D scrambling in the observed fragments.


Assuntos
Espectrometria de Massas/métodos , Peptídeos/química , Sequência de Aminoácidos , Deutério , Radicais Livres/química , Glicina/química , Hidrogênio/química , Estrutura Molecular , Peptídeos/síntese química
12.
J Am Soc Mass Spectrom ; 16(12): 1985-99, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16271296

RESUMO

The use of a new electrospray qQq Fourier transform ion cyclotron mass spectrometer (qQq-FTICR MS) instrument for biologic applications is described. This qQq-FTICR mass spectrometer was designed for the study of post-translationally modified proteins and for top-down analysis of biologically relevant protein samples. The utility of the instrument for the analysis of phosphorylation, a common and important post-translational modification, was investigated. Phosphorylation was chosen as an example because it is ubiquitous and challenging to analyze. In addition, the use of the instrument for top-down sequencing of proteins was explored since this instrument offers particular advantages to this approach. Top-down sequencing was performed on different proteins, including commercially available proteins and biologically derived samples such as the human E2 ubiquitin conjugating enzyme, UbCH10. A good sequence tag was obtained for the human UbCH10, allowing the unambiguous identification of the protein. The instrument was built with a commercially produced front end: a focusing rf-only quadrupole (Q0), followed by a resolving quadrupole (Q1), and a LINAC quadrupole collision cell (Q2), in combination with an FTICR mass analyzer. It has utility in the analysis of samples found in substoichiometric concentrations, as ions can be isolated in the mass resolving Q1 and accumulated in Q2 before analysis in the ICR cell. The speed and efficacy of the Q2 cooling and fragmentation was demonstrated on an LCMS-compatible time scale, and detection limits for phosphopeptides in the 10 amol/muL range (pM) were demonstrated. The instrument was designed to make several fragmentation methods available, including nozzle-skimmer fragmentation, Q2 collisionally activated dissociation (Q2 CAD), multipole storage assisted dissociation (MSAD), electron capture dissociation (ECD), infrared multiphoton induced dissociation (IRMPD), and sustained off resonance irradiation (SORI) CAD, thus allowing a variety of MS(n) experiments. A particularly useful aspect of the system was the use of Q1 to isolate ions from complex mixtures with narrow windows of isolation less than 1 m/z. These features enable top-down protein analysis experiments as well structural characterization of minor components of complex mixtures.


Assuntos
Mapeamento de Peptídeos/métodos , Processamento de Proteína Pós-Traducional , Proteínas/análise , Proteínas/química , Análise de Sequência de Proteína/instrumentação , Espectrometria de Massas por Ionização por Electrospray/instrumentação , Espectroscopia de Infravermelho com Transformada de Fourier/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Fosfopeptídeos/análise , Fosfopeptídeos/química , Fosforilação , Análise de Sequência de Proteína/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
13.
J Am Soc Mass Spectrom ; 15(7): 1087-98, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15234367

RESUMO

First results are reported on the application of ECD in analysis of 2+ and 3+ ions of stereoisomers of Trp-cage (NLYIQWLKDGGPSSGRPPPS), the smallest and fastest-folding protein, which exhibits a tightly folded tertiary structure in solution. The chiral recognition based on the ratios of the abundances of z(18) and z(19) fragments in ECD of 2+ ions was excellent even for a single amino acid (Tyr) D-substitution (R(chiral) = 8.6). The chiral effect decreased with an increase of temperature at the electrospray ion source, as well as at a higher degree of ionization, 3+ ions (R(chiral) = 1.5). A general approach is suggested for charge localization in n+ ions by analysis of ECD mass spectra of (n + 1)+ ions. Application of this approach to 3+ Trp-cage ions revealed the protonation probability order in 2+ ions: Arg(16) >> Gln(5) > approximately N-terminus. The ECD results for native form of the 2+ ions favor the preservation of the solution-phase tertiary structure, and chiral recognition through the interaction between the charges and the neutral bond network. Conversely, ECD of 3+ ions supports the dominance of ionic hydrogen bonding which determines a different gas-phase structure than found in solution. Vibrational activation of 2+ ions indicated greater stability of the native form, but the fragmentation patterns did not provide stereoisomer differentiation, thus underlying the special position of ECD among other MS/MS fragmentation techniques. Further ECD studies should yield more structural information as well as quantitative single-amino acid D/L content measurements in proteins.


Assuntos
Aminoácidos/análise , Aminoácidos/química , Cristalografia/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Massas/métodos , Elétrons , Dobramento de Proteína , Estrutura Terciária de Proteína , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
14.
J Am Soc Mass Spectrom ; 15(1): 128-32, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14698563

RESUMO

A new design for a high pressure MALDI-FTMS instrument is described and initial data are shown. The instrument incorporates a large, 10 cm x 10 cm, sample translation stage to accommodate and position the MALDI target. The new instrument allows coupling to a wide variety of surface techniques such as gel electrophoresis or surface plasmon resonance. Coupling to thin layer chromatography is shown. Furthermore, a new nozzle design allows high pressure collisional cooling sufficient to stabilize gangliosides while minimizing the gas load on the system.


Assuntos
Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/instrumentação , Espectroscopia de Infravermelho com Transformada de Fourier/instrumentação , Cromatografia em Camada Fina , Gangliosídeos/química
15.
J Mass Spectrom ; 37(11): 1141-4, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12447890

RESUMO

Ionization energies (IE) of [M + zH](z+) (z+) electrospray-produced polypeptides were determined by electron ionization in a Penning cell of 4.7 and 9.4 T Fourier transform mass spectrometers. For z = 1+ and substance P, the found IE value of 11.0 +/- 0.4 eV is in agreement with that obtained earlier for ions generated with matrix-assisted laser desorption/ionization. For higher z, the following values were found: 11.7 +/- 0.3 eV for 2+ of [Arg-8]-vasopressin, 11.1 +/- 0.6 eV for 2+ of substance P, 12.2 +/- 0.7 eV for 2+ of renin substrate, 13.3 +/- 0.4 eV for 3+ of B-chain of insulin and 14.6 +/- 0.6 eV for 4+ and 15.1 +/- 0.4 eV for 5+ of melittin. It was found that 90% of existing IE data on polypeptides in the 1.0-3.5 kDa mass range are described with

Assuntos
Análise de Fourier , Espectrometria de Massas/métodos , Peptídeos/química , Angiotensinogênio/química , Insulina/química , Íons/química , Meliteno/química , Prótons , Substância P/química , Vasopressinas/química
16.
Phytochemistry ; 59(5): 501-11, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11853745

RESUMO

Nineteen species of Passiflora (Passifloraceae) were examined for the presence of cyanogenic glycosides. Passibiflorin, a bisglycoside containing the 6-deoxy-beta-D-gulopyranosyl residue, was isolated from P. apetala, P. biflora, P. cuneata, P. indecora, P. murucuja and P. perfoliata. In some cases this glycoside co-occurs with simple beta-D-glucopyranosides: tetraphyllin A, deidaclin, tetraphyllin B, volkenin, epivolkenin and taraktophyllin. P. citrina contains passicapsin, a rare glycoside with the 2,6-dideoxy-beta-D-xylo-hexopyranosyl moiety, while P. herbertiana contains tetraphyllin A, deidaclin, epivolkenin and taraktophyllin, P. discophora tetraphyllin B and volkenin, and P. x violacea tetraphyllin B sulfate. The remaining species were noncyanogenic. The glycosides were identified by 1H and 13C NMR spectroscopy following isolation by reversed-phase preparative HPLC. From P. guatemalensis, a new glucoside named passiguatemalin was isolated and identified as a 1-(beta-D-glucopyranosyloxy)-2,3-dihydroxycyclopentane-1-carbonitrile. An isomeric glycoside was prepared by catalytic hydrogenation of gynocardin. alpha-Hydroxyamides corresponding to the cyanogenic glycosides were isolated from several Passiflora species. These alpha-hydroxyamides, presumably formed during processing of the plant material, behave as cyanogenic compounds when treated with commercial Helix pomatia crude enzyme preparation. Thus, the enzyme preparation appears to contain an amide dehydratase, which converts alpha-hydroxyamides to cyanohydrins that liberate cyanide; this finding is of interest in connection with analysis of plant tissues and extracts using Helix pomatia enzymes.


Assuntos
Amidas/metabolismo , Glicosídeos/metabolismo , Nitrilas/metabolismo , Passiflora/metabolismo , Cromatografia Líquida de Alta Pressão , Glicosídeos/química , Espectroscopia de Ressonância Magnética , Nitrilas/química
17.
J Chromatogr A ; 962(1-2): 95-103, 2002 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-12198976

RESUMO

Two mass spectrometry methods, high-performance liquid chromatography combined on-line with electrospray ionization mass spectrometry (HPLC-ESI-MS) and electron-capture (EC) dissociation tandem mass spectrometry (MS-MS), were applied for structural analysis of bovine and human osteocalcins. Osteocalcin contains gamma-carboxyglutamic acid (Gla) residues, which bind metal ions, among its amino acids. Ethylenediaminetetraacetic acid (EDTA) was added to all samples in order to chelate bound metal ions. After elimination of interfering metal ions MS spectra became uncomplicated to interpret. EDTA is incompatible with ESI and it was removed from samples using either on-line HPLC or micropurification method. The number of Gla residues varies in osteocalcin. These subforms, which contain different amounts of Gla residues, were separated using the HPLC-ESI-MS method. In order to determine locations of Gla residues in human osteocalcin, which contained two Gla residues, dissociation MS-MS method was successfully applied.


Assuntos
Ácido 1-Carboxiglutâmico/análise , Cromatografia Líquida de Alta Pressão/métodos , Osteocalcina/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Sequência de Aminoácidos , Animais , Bovinos , Quelantes/química , Ácido Edético/química , Humanos , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos
18.
Cell Rep ; 7(3): 705-14, 2014 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-24767987

RESUMO

Fermenting glucose in the presence of enough oxygen to support respiration, known as aerobic glycolysis, is believed to maximize growth rate. We observed increasing aerobic glycolysis during exponential growth, suggesting additional physiological roles for aerobic glycolysis. We investigated such roles in yeast batch cultures by quantifying O2 consumption, CO2 production, amino acids, mRNAs, proteins, posttranslational modifications, and stress sensitivity in the course of nine doublings at constant rate. During this course, the cells support a constant biomass-production rate with decreasing rates of respiration and ATP production but also decrease their stress resistance. As the respiration rate decreases, so do the levels of enzymes catalyzing rate-determining reactions of the tricarboxylic-acid cycle (providing NADH for respiration) and of mitochondrial folate-mediated NADPH production (required for oxidative defense). The findings demonstrate that exponential growth can represent not a single metabolic/physiological state but a continuum of changing states and that aerobic glycolysis can reduce the energy demands associated with respiratory metabolism and stress survival.


Assuntos
Metabolismo Energético , Glicólise , Saccharomyces cerevisiae/crescimento & desenvolvimento , Trifosfato de Adenosina/metabolismo , Técnicas de Cultura Celular por Lotes , Biomassa , Ciclo do Ácido Cítrico , Mitocôndrias/metabolismo , NADP/metabolismo , Processamento de Proteína Pós-Traducional , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
Science ; 339(6118): 460-4, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-23349292

RESUMO

Signaling pathways can induce different dynamics of transcription factor (TF) activation. We explored how TFs process signaling inputs to generate diverse dynamic responses. The budding yeast general stress-responsive TF Msn2 acted as a tunable signal processor that could track, filter, or integrate signals in an input-dependent manner. This tunable signal processing appears to originate from dual regulation of both nuclear import and export by phosphorylation, as mutants with one form of regulation sustained only one signal-processing function. Versatile signal processing by Msn2 is crucial for generating distinct dynamic responses to different natural stresses. Our findings reveal how complex signal-processing functions are integrated into a single molecule and provide a guide for the design of TFs with "programmable" signal-processing functions.


Assuntos
Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Transporte Ativo do Núcleo Celular , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Citoplasma/metabolismo , Modelos Biológicos , Sinais de Exportação Nuclear , Sinais de Localização Nuclear , Pressão Osmótica , Estresse Oxidativo , Fosforilação , Proteínas/farmacologia , Saccharomyces cerevisiae/genética , Estresse Fisiológico
20.
Genetics ; 195(4): 1307-17, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24077307

RESUMO

The Toll signaling pathway has a highly conserved function in innate immunity and is regulated by multiple factors that fine tune its activity. One such factor is ß-arrestin Kurtz (Krz), which we previously implicated in the inhibition of developmental Toll signaling in the Drosophila melanogaster embryo. Another level of controlling Toll activity and immune system homeostasis is by protein sumoylation. In this study, we have uncovered a link between these two modes of regulation and show that Krz affects sumoylation via a conserved protein interaction with a SUMO protease, Ulp1. Loss of function of krz or Ulp1 in Drosophila larvae results in a similar inflammatory phenotype, which is manifested as increased lamellocyte production; melanotic mass formation; nuclear accumulation of Toll pathway transcriptional effectors, Dorsal and Dif; and expression of immunity genes, such as Drosomycin. Moreover, mutations in krz and Ulp1 show dosage-sensitive synergistic genetic interactions, suggesting that these two proteins are involved in the same pathway. Using Dorsal sumoylation as a readout, we found that altering Krz levels can affect the efficiency of SUMO deconjugation mediated by Ulp1. Our results demonstrate that ß-arrestin controls Toll signaling and systemic inflammation at the level of sumoylation.


Assuntos
Arrestinas/metabolismo , Cisteína Endopeptidases/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Transdução de Sinais , Receptores Toll-Like/metabolismo , Animais , Arrestinas/genética , Linhagem Celular , Cisteína Endopeptidases/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Inflamação/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Ligação Proteica , Sumoilação , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA