Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Biotechnol Bioeng ; 120(10): 3067-3078, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37317560

RESUMO

Adipose tissue is an attractive source of mesenchymal stem cells (at-MSCs), but their low osteogenic potential limits their use in bone regeneration. Adipose tissue plays a role in pro-inflammatory diseases by releasing cytokines with a catabolic effect on bone, such as tumor necrosis factor-alpha (TNF-α). Thus, we hypothesized that endogenous TNF-α could have a negative effect on at-MSC differentiation into osteoblasts. Short interfering RNAs (siRNAs) targeting TNF-α receptors (siR1, siR2, and si1R/R2) were transfected into at-MSCs, and cell differentiation was assessed by measuring the expression of bone markers, ALP activity, and mineralized matrix. Scrambled was used as Control. Knockout at-MSCs (KOR1/R2) was injected in mice calvaria defects, and bone formation was evaluated by microtomography and histological analysis. Data were compared by Kruskal-Wallis or analysis of variance (5%). The expression of bone markers confirmed that at-MSCs differentiate less than bone marrow MSCs. In silenced cells, the expression of Alp, Runx2, and Opn was generally higher compared to Control. ALP, RUNX2, and OPN were expressed at elevated levels in silenced groups, most notably at-MSCs-siR1/R2. ALP was detected at high levels in at-MSCs-siR1/R2 and in-MSCs-siR1, followed by an increase in mineralized nodules in at-MSCs-siR1/R2. As the morphometric parameters increased, the groups treated with KOR1/R2 exhibited slight bone formation near the edges of the defects. Endogenous TNF-α inhibits osteoblast differentiation and activity in at-MSCs, and its disruption increases bone formation. While opening a path of investigation, that may lead to the development of new treatments for bone regeneration using at-MSC-based therapies.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Fator de Necrose Tumoral alfa , Animais , Camundongos , Diferenciação Celular , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Camundongos Knockout , Osteoblastos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
2.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37047078

RESUMO

Although the exact mechanism of the pathogenesis of coronavirus SARS-CoV-2 (COVID-19) is not fully understood, oxidative stress and the release of pro-inflammatory cytokines have been highlighted as playing a vital role in the pathogenesis of the disease. In this sense, alternative treatments are needed to reduce the level of inflammation caused by COVID-19. Therefore, this study aimed to investigate the potential effect of red photobiomodulation (PBM) as an attractive therapy to downregulate the cytokine storm caused by COVID-19 in a zebrafish model. RT-qPCR analyses and protein-protein interaction prediction among SARS-CoV-2 and Danio rerio proteins showed that recombinant Spike protein (rSpike) was responsible for generating systemic inflammatory processes with significantly increased levels of pro-inflammatory (il1b, il6, tnfa, and nfkbiab), oxidative stress (romo1) and energy metabolism (slc2a1a and coa1) mRNA markers, with a pattern similar to those observed in COVID-19 cases in humans. On the other hand, PBM treatment was able to decrease the mRNA levels of these pro-inflammatory and oxidative stress markers compared with rSpike in various tissues, promoting an anti-inflammatory response. Conversely, PBM promotes cellular and tissue repair of injured tissues and significantly increases the survival rate of rSpike-inoculated individuals. Additionally, metabolomics analysis showed that the most-impacted metabolic pathways between PBM and the rSpike treated groups were related to steroid metabolism, immune system, and lipid metabolism. Together, our findings suggest that the inflammatory process is an incisive feature of COVID-19 and red PBM can be used as a novel therapeutic agent for COVID-19 by regulating the inflammatory response. Nevertheless, the need for more clinical trials remains, and there is a significant gap to overcome before clinical trials can commence.


Assuntos
COVID-19 , Animais , Humanos , Peixe-Zebra/metabolismo , SARS-CoV-2/metabolismo , Síndrome da Liberação de Citocina , Citocinas/metabolismo , RNA Mensageiro , Proteínas de Membrana , Proteínas Mitocondriais
3.
Mol Biol Rep ; 49(12): 11715-11727, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36198848

RESUMO

BACKGROUND: Neuregulins comprise a large family of growth factors containing an epidermal growth factor (EGF) domain. NRG1 acts in signaling pathways involved in proliferation, apoptosis, migration, differentiation, and adhesion of many normal cell types and in human diseases. The EGF domain of NRG1 mediates signaling by interaction with members of the ErbB family of receptors. Easy access to correctly folded hNRG1α EGF domain can be a valuable tool to investigate its function in different cell types. MATERIALS AND METHODS: The EGF domain of hNRG1α was produced in Escherichia coli in fusion with TrxA and purified after cleavage of TrxA. Conformation and stability analyses were performed by using biophysical methods and the disulfide bonds were mapped by mass spectrometry. The activity of the hNRG1α EGF domain was demonstrated in cell proliferation and migration assays. RESULTS: Approximately 3.3 mg of hNRG1α EGF domain were obtained starting from a 0.5 L of E. coli culture. Correct formation of the three disulfide bonds was demonstrated by mass spectrometry with high accuracy. Heat denaturation assays monitored by circular dichroism and dynamic light scattering revealed that it is a highly stable protein. The recombinant EGF domain of hNRG1α purified in this work is highly active, inducing cell proliferation at concentration as low as 0.05 ng/mL. It induces also cell migration as demonstrated by a gap closure assay. CONCLUSION: The EGF domain of hNRG1α was produced in E. coli with the correct disulfide bonds and presented high stimulation of HeLa cell proliferation and NDFH cell migration.


Assuntos
Fator de Crescimento Epidérmico , Neurregulinas , Humanos , Fator de Crescimento Epidérmico/metabolismo , Neurregulinas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Células HeLa , Dissulfetos/química , Dissulfetos/metabolismo
4.
Lasers Med Sci ; 37(7): 2845-2854, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35366748

RESUMO

Diabetes mellitus (DM) is a chronic metabolic disease that affects bone metabolism, which can be related to a reduced osteogenic potential of bone marrow mesenchymal stem cells (BM-MSCs). MSCs from diabetic rats (dBM-MSC) have shown a tendency to differentiate towards adipocytes (AD) instead of osteoblasts (OB). Since photobiomodulation (PBM) therapy is a non-invasive treatment capable of recovering the osteogenic potential of dBM-MSCs, we aimed to evaluate whether PBM can modulate MSC's differentiation under hyperglycemic conditions. BM-MSCs of healthy and diabetic rats were isolated and differentiated into osteoblasts (OB and dOB) and adipocytes (AD and dAD). dOB and dAD were treated with PBM every 3 days (660 nm; 5 J/cm2; 0.14 J; 20 mW; 0.714 W/cm2) for 17 days. Cell morphology and viability were evaluated, and cell differentiation was confirmed by gene expression (RT-PCR) of bone (Runx2, Alp, and Opn) and adipocyte markers (Pparγ, C/Ebpα, and C/Ebpß), production of extracellular mineralized matrix (Alizarin Red), and lipid accumulation (Oil Red). Despite no differences on cell morphology, the effect of DM on cells was confirmed by a decreased gene expression of bone markers and matrix production of dOB, and an increased expression of adipocyte and lipid accumulation of dAD, compared to heatlhy cells. On the other hand, PBM reversed the effects of dOB and dAD. The negative effect of DM on cells was confirmed, and PBM improved OB differentiation while decreasing AD differentiation, driving the fate of dBM-MSCs. These results may contribute to optimizing bone regeneration in diabetic patients.


Assuntos
Diabetes Mellitus Experimental , Hiperglicemia , Células-Tronco Mesenquimais , Adipócitos , Animais , Células da Medula Óssea , Diferenciação Celular , Células Cultivadas , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/radioterapia , Hiperglicemia/metabolismo , Hiperglicemia/radioterapia , Lipídeos , Osteoblastos , Osteogênese/genética , Ratos
5.
FASEB J ; 34(8): 10531-10546, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32543747

RESUMO

Myocarditis is an inflammation of the myocardium that can progress to a more severe phenotype of dilated cardiomyopathy (DCM). Three main harmful factors determine this progression: inflammation, cell death, and oxidative stress. Lipoxins and their derivatives are endogenous proresolving mediators that induce the resolution of the inflammatory process. This study aims to determine whether these mediators play a protective role in a murine model of experimental autoimmune myocarditis (EAM) by treating with the lipoxin A4 analog BML-111. We observed that EAM mice presented extensive infiltration areas that correlated with higher levels of inflammatory and cardiac damage markers. Both parameters were significantly reduced in BML-treated EAM mice. Consistently, cardiac dysfunction, hypertrophy, and emerging fibrosis detected in EAM mice was prevented by BML-111 treatment. At the molecular level, we demonstrated that treatment with BML-111 hampered apoptosis and oxidative stress induction by EAM. Moreover, both in vivo and in vitro studies revealed that these beneficial effects were mediated by activation of Nrf2 pathway through CaMKK2-AMPKα kinase pathway. Altogether, our data indicate that treatment with the lipoxin derivative BML-111 effectively alleviates EAM outcome and prevents cardiac dysfunction, thus, underscoring the therapeutic potential of lipoxins and their derivatives to treat myocarditis and other inflammatory cardiovascular diseases.


Assuntos
Apoptose/efeitos dos fármacos , Doenças Autoimunes/tratamento farmacológico , Coração/efeitos dos fármacos , Ácidos Heptanoicos/farmacologia , Miocardite/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Animais , Doenças Autoimunes/metabolismo , Cardiomiopatia Dilatada/tratamento farmacológico , Cardiomiopatia Dilatada/metabolismo , Modelos Animais de Doenças , Feminino , Fibrose/tratamento farmacológico , Fibrose/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipoxinas/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Miocardite/metabolismo , Miocárdio/metabolismo
6.
Clin Exp Allergy ; 50(7): 815-823, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32511782

RESUMO

BACKGROUND: Pollen food allergy syndrome (PFAS) related to PR10 from vegetables is common in northern Europe, whereas in Mediterranean countries PFAS has been preferentially associated with profilins. However, there are pollen-allergic patients reactive to Bet v 1 in birch-free regions. Since it cannot be the primary sensitizer, there has to be another culprit. Quercus ilex is a good candidate as it belongs to the order Fagales. This order includes trees with highly sensitizing pollen such as alder, hazel, hornbeam, oak and chestnut because of the presence of PR10 allergens. PR10 allergens have indeed been described in other Quercus species. OBJECTIVE: Our goals were to determine the rate of sensitization to Q. ilex in central Spain and the associated frequency of PFAS; secondly to identify and clone the Q. ilex allergen PR10. METHODS: We included 224 allergic patients with respiratory symptoms to estimate the rate of sensitization. A skin prick test (SPT) and ImmunoCAP were performed. A total of 38 Q. ilex-sensitized patients were tested using Western blotting to determine the rate of Que i 1. Peptides from Que i 1 were analysed by MALDI-TOF/TOF and Orbitrap LC-MSMS. The Que i 1 sequence was first obtained from the Holm oak transcriptome then cloned and expressed in bacteria. RESULTS: 59.8% of pollen-allergic children were sensitized to Q. ilex. We described and cloned the Q. ilex PR10, Que i 1, which has a sensitization rate of 60.5% and was recognized by 65.4% patients reporting PFAS. CONCLUSION AND CLINICAL RELEVANCE: Sensitization to Q. ilex pollen has increased significantly since 1995. This sensitization could be important, as the presence of PFAS in this population is higher than in patients not sensitized to Q. ilex. The first Q. ilex allergen has been described and is related to PFAS in Spanish patients sensitized to PR10 but not exposed to birch pollen.


Assuntos
Alérgenos , Hipersensibilidade Alimentar/epidemiologia , Quercus , Rinite Alérgica Sazonal/epidemiologia , Adolescente , Alérgenos/genética , Alérgenos/imunologia , Criança , Feminino , Hipersensibilidade Alimentar/imunologia , Humanos , Masculino , Quercus/genética , Quercus/imunologia , Rinite Alérgica Sazonal/imunologia , Espanha/epidemiologia , Síndrome
7.
Plant Cell Rep ; 39(4): 527-541, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31993729

RESUMO

KEY MESSAGE: Several members of WOX and KNOX gene families and several plant growth regulators, basically cytokinins and auxins, play a key role during adventitious caulogenesis in the conifer Pinus pinea. Similar to Arabidopsis thaliana, Pinus pinea shoot organogenesis is a multistep process. However, there are key differences between both species, which may alter the underlying physiological and genetic programs. It is unknown if the genic expression models during angiosperm development may be applicable to conifers. In this work, an analysis of the endogenous content of different plant growth regulators and the expression of genes putatively involved in adventitious caulogenesis in P. pinea cotyledons was conducted. A multivariate analysis of both datasets was also realized through partial least squares regression and principal component analysis to obtain an integral vision of the mechanisms involved in caulogenesis in P. pinea. Analyses show that cotyledons cultured in the presence of benzyladenine during long times (2-6 days) cluster separately from the rest of the samples, suggesting that the benzyladenine increase observed during the first hours of culture is sufficient to trigger the caulogenic response through the activation of specific developmental programs. In particular, the most relevant factors involved in this process are the cytokinins trans-zeatin, dihydrozeatin, trans-zeatin riboside and isopentenyl adenosine; the auxin indoleacetic acid; and the genes PpWUS, PpWOX5, PpKN2, PpKN3 and PipiRR1. WUS is functional in pines and has an important role in caulogenesis. Interestingly, WOX5 also seems to participate in the process, although its specific role has not been determined.


Assuntos
Cotilédone/química , Cotilédone/metabolismo , Meristema/metabolismo , Pinus/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Aminobutiratos/farmacologia , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Cotilédone/efeitos dos fármacos , Cotilédone/genética , Citocininas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Ácidos Indolacéticos/metabolismo , Meristema/química , Meristema/genética , Pinus/química , Pinus/genética , Proteínas de Plantas/genética , Brotos de Planta/metabolismo , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Espectrometria de Massas em Tandem
8.
J Biophotonics ; 16(7): e202300011, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37070708

RESUMO

This study aimed to evaluate the effectiveness of photobiomodulation (PBM) therapy using 940-nm laser in patients undergoing orthognathic surgery. Twenty individuals were randomly distributed into laser (n = 10) and control (n = 10) groups. The PBM was conducted immediately after surgery, after 24 h, 48 h, and weekly for up to 4 weeks. All participants were evaluated for pain, edema, trismus and paresthesia. Data were compared by Fisher's and Mann-Whitney or chi-square tests (5%). The pain decreased from 24 h to 4 weeks, with the laser group reaching any pain after 3 weeks (p < 0.001). A significant difference was noticed for trismus on days 14 and 30 (p = 0.002; p = 0.019), without difference in paresthesia (p = 0.198). Edema was lower on the laser group compared to control, without a significant difference for most measurements. Data indicate that 940-nm PBM therapy decreased the occurrence of postoperative pain and significantly improved trismus.


Assuntos
Terapia com Luz de Baixa Intensidade , Cirurgia Ortognática , Humanos , Trismo/terapia , Parestesia , Dor Pós-Operatória/terapia , Lasers Semicondutores , Edema
9.
Braz Dent J ; 33(2): 73-82, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35508039

RESUMO

This study was conducted to assess the in vitro response of human periodontal ligament stem cells (hPDLSCs) to bacterial lipopolysaccharide (LPS) activation and application of three calcium silicate-based materials (CSBM): Bio-C Sealer, MTA Fillapex and Cimmo HP. Characterization of the CSBM was performed by FTIR (n = 3). Extracts of Bio-C Sealer, MTA Fillapex and Cimmo HP were prepared and diluted (1:1, 1:4 and 1:16). Culture of hPDLSCs was established and treated or not with LPS from Escherichia coli (1 µg/mL) for 7 days. MTT assay was used to assess cell viability at 24, 48 and 72 h (n = 9). Alkaline phosphatase (ALP) activity was indirectly assayed at day 7 (n = 5). TNF-α and Il -1 0 cytokines were quantified by ELISA at 24h-cell supernatants (n = 6). Data were analyzed by ANOVA and Tukey's test (α = 0.05). The cell viability of the LPS-activated hPDLSCs were higher than untreated control (p < 0.05). The application of CSBM affected the cell viability of untreated and LPS-activated cells (p < 0.05). ALP activity was higher for Bio-C Sealer and Cimmo HP in untreated and LPS-activated cells, respectively (p < 0.05). Application of CSBM normalized the TNF-α secretion in the LPS-activated cells (p < 0.05). Only MTA Fillapex in untreated hPDLSCs presented higher values of Il -1 0 (p < 0.05). Taken collectively, the results suggests that the simulation of the inflammatory process by LPS affect the in vitro response the hPDLSCs to the application of the CSBM.


Assuntos
Ligamento Periodontal , Materiais Restauradores do Canal Radicular , Humanos , Compostos de Cálcio/farmacologia , Células Cultivadas , Lipopolissacarídeos/farmacologia , Silicatos/farmacologia , Células-Tronco , Fator de Necrose Tumoral alfa
10.
Braz Dent J ; 33(5): 9-17, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36287503

RESUMO

This study assessed the cell viability, cytokine production, and mineralization potential of human dental pulp cells (hDPCs) after exposure to lipopolysaccharide (LPS) and application of calcium silicate-based materials (CSBM). Characterization of the CSBM was performed by infrared spectroscopy (n = 3). Extracts of Bio-C Repair, Biodentine, Cimmo HD, and MTA Repair HP were prepared and diluted (1:1, 1:4, and 1:16). Culture of hDPCs was established and treated or not with 1 µg/mL of LPS from Escherichia coli for 7 days. MTT assay was used to assess cell viability at 24, 48, and 72 h (n = 6). Alkaline phosphatase (ALP) activity was assayed on day 7 (n = 4). Il-10 and TNF-α were quantified by ELISA at 24 h (n = 6). Data were analyzed by ANOVA and Tukey's test (α = 0.05). Cell viability of LPS-activated hPDCs was higher than untreated control in 48 and 72 h (p < 0.05). Differences between non-treated and LPS-activated hPDCs were observed for Biodentine and Cimmo HP (p < 0.05). The CSBM influenced the cell viability (p < 0.05). ALP activity was higher in LPS-activated hDPCs (p < 0.05). No changes in the concentration of TNF-α were observed between groups (p > 0.05). The CSBM increased the Il-10 production (p < 0.05). LPS-activated hDPCs presented increased cell viability and ALP activity. The CSBM showed mild toxicity and was able to enhance the cell viability and mineralization potential of untreated and LPS-activated hDPCs. The CSBM also induced anti-inflammatory mechanisms without compromising pro-inflammatory ones.


Assuntos
Interleucina-10 , Lipopolissacarídeos , Humanos , Fosfatase Alcalina , Compostos de Cálcio/farmacologia , Diferenciação Celular , Células Cultivadas , Polpa Dentária , Lipopolissacarídeos/farmacologia , Silicatos/farmacologia , Fator de Necrose Tumoral alfa
11.
Braz Oral Res ; 36: e022, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35293496

RESUMO

Despite the crucial role of osteoclasts in the physiological process of bone repair, most bone tissue engineering strategies have focused on osteoblast-biomaterial interactions. Although Biosilicate® with two crystalline phases (BioS-2P) exhibits osteogenic properties and significant bone formation, its effects on osteoclasts are unknown. This study aimed to investigate the in vitro and in vivo effects of BioS-2P on osteoclast differentiation and activity. RAW 264.7 cells were cultured in osteoclastogenic medium (OCM) or OCM conditioned with BioS-2P (OCM-BioS-2P), and the cell morphology, viability, and osteoclast differentiation were evaluated. BioS-2P scaffolds were implanted into rat calvarial defects, and the bone tissue was evaluated using tartrate-resistant acid phosphatase (TRAP) staining and RT-polymerase chain reaction (PCR) after 2 and 4 weeks to determine the gene expressions of osteoclast markers and compare them with those of the bone grown in empty defects (Control). OCM-BioS-2P favored osteoclast viability and activity, as evidenced by an increase in the TRAP-positive cells and matrix resorption. The bone tissue grown on BioS-2P scaffolds exhibited higher expression of the osteoclast marker genes (Ctsk, Mmp 9, Rank) after 2 and 4 weeks and the RankL/Opg ratio after 2 weeks. Trap gene expression was lower at 2 weeks, and a higher number of TRAP-stained areas were observed in the newly formed bone on BioS-2P scaffolds at both 2 and 4 weeks compared to the Controls. These results enhanced our understanding of the role of bioactive glass-ceramics in bone repair, and highlighted their role in the modulation of osteoclastic activities and promotion of interactions between bone tissues and biomaterials.


Assuntos
Osteoclastos , Engenharia Tecidual , Animais , Osso e Ossos , Cerâmica/química , Osteoblastos , Ratos
12.
Sci Total Environ ; 813: 152345, 2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-34942250

RESUMO

Despite the significant increase in the generation of SARS-CoV-2 contaminated domestic and hospital wastewater, little is known about the ecotoxicological effects of the virus or its structural components in freshwater vertebrates. In this context, this study evaluated the deleterious effects caused by SARS-CoV-2 Spike protein on the health of Danio rerio, zebrafish. We demonstrated, for the first time, that zebrafish injected with fragment 16 to 165 (rSpike), which corresponds to the N-terminal portion of the protein, presented mortalities and adverse effects on liver, kidney, ovary and brain tissues. The conserved genetic homology between zebrafish and humans might be one of the reasons for the intense toxic effects followed inflammatory reaction from the immune system of zebrafish to rSpike which provoked damage to organs in a similar pattern as happen in severe cases of COVID-19 in humans, and, resulted in 78,6% of survival rate in female adults during the first seven days. The application of spike protein in zebrafish was highly toxic that is suitable for future studies to gather valuable information about ecotoxicological impacts, as well as vaccine responses and therapeutic approaches in human medicine. Therefore, besides representing an important tool to assess the harmful effects of SARS-CoV-2 in the aquatic environment, we present the zebrafish as an animal model for translational COVID-19 research.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Animais , Feminino , Humanos , SARS-CoV-2 , Peixe-Zebra
13.
Genes (Basel) ; 12(3)2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808690

RESUMO

Conifers are a group of woody plants with an enormous economic and ecological importance. Breeding programs are necessary to select superior varieties for planting, but they have many limitations due to the biological characteristics of conifers. Somatic embryogenesis (SE) and de novo organogenesis (DNO) from in vitro cultured tissues are two ways of plant mass propagation that help to overcome this problem. Although both processes are difficult to achieve in conifers, they offer advantages like a great efficiency, the possibilities to cryopreserve the embryogenic lines, and the ability of multiplying adult trees (the main bottleneck in conifer cloning) through DNO. Moreover, SE and DNO represent appropriate experimental systems to study the molecular bases of developmental processes in conifers such as embryogenesis and shoot apical meristem (SAM) establishment. Some of the key genes regulating these processes belong to the WOX and KNOX homeobox gene families, whose function has been widely described in Arabidopsis thaliana. The sequences and roles of these genes in conifers are similar to those found in angiosperms, but some particularities exist, like the presence of WOXX, a gene that putatively participates in the establishment of SAM in somatic embryos and plantlets of Pinus pinaster.


Assuntos
Perfilação da Expressão Gênica/métodos , Proteínas de Homeodomínio/genética , Análise de Sequência de DNA/métodos , Traqueófitas/fisiologia , Criopreservação , Regulação da Expressão Gênica de Plantas , Técnicas In Vitro , Família Multigênica , Organogênese Vegetal , Melhoramento Vegetal , Proteínas de Plantas/genética , Técnicas de Embriogênese Somática de Plantas , Regeneração , Análise de Sequência de RNA , Traqueófitas/genética
14.
J Biophotonics ; 14(3): e202000393, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33184942

RESUMO

Autologous cell-based therapy for bone regeneration might be impaired by diabetes mellitus (DM) due to the negative effects on mesenchymal stem cells (MSCs) differentiation. Strategies to recover their osteogenic potential could optimize the results. We aimed to evaluate the effect of photobiomodulation (PBM) therapy on osteoblast differentiation of rats with induced DM. Bone marrow MSCs of healthy and diabetic rats were isolated and differentiated into osteoblasts (OB and dOB, respectively). dOB were treated with PBM therapy every 72 hour (660 nm; 0.14 J; 20 mW; 0.714 W/cm2 , and 5 J/cm2 ). Cell morphology, viability, gene and protein expression of osteoblastic markers, alkaline phosphatase (ALP) activity, and the mineralized matrix production of dOB-PBM were compared to dOB. PBM therapy improved viability of dOB, increased the gene and protein expression of bone markers, the ALP activity and the mineralized matrix production. PBM therapy represents an innovative therapeutic approach to optimize the treatment of bone defects in diabetic patients.


Assuntos
Diabetes Mellitus Experimental , Terapia com Luz de Baixa Intensidade , Células-Tronco Mesenquimais , Animais , Diferenciação Celular , Células Cultivadas , Diabetes Mellitus Experimental/terapia , Humanos , Osteoblastos , Osteogênese , Ratos
15.
Braz J Cardiovasc Surg ; 36(6): 788-795, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34236788

RESUMO

INTRODUCTION: Stroke is a complication that causes considerable morbidity and mortality during the heart surgery postoperative period (incidence: 1.3 to 5%; mortality: 13 to 41%). Models for assessing the risk of stroke after heart surgery have been proposed, but most of them do not evaluate postoperative morbidity. The aim of this study was to develop a risk score for postoperative stroke in patients who undergo heart surgery with cardiopulmonary bypass. METHODS: A cohort study was conducted with data from 4,862 patients who underwent surgery from 1996 to 2016. Logistic regression was used to assess relationships between risk factors and stroke. Data from 3,258 patients were used to construct the model. The model's performance was then validated using data from the remainder of the patients (n=1,604). The model's accuracy was tested using the area under the receiver operating characteristic (ROC) curve. RESULTS: The prevalence of stroke during the postoperative period was 3% (n=149); 59% of the patients who exhibited this outcome were male, 51% were aged ≥ 66 years, and 31.5% of the patients died. The variables that remained as independent predictors of the outcome after multivariate analysis were advanced age, urgent/emergency surgery, peripheral arterial occlusive disease, history of cerebrovascular disease, and cardiopulmonary bypass time ≥ 110 minutes. The area under the ROC curve was 0.71 (95% confidence interval 0.66 - 0.75). CONCLUSION: We were able to develop a risk score for stroke after heart surgery. This score classifies patients as low, medium, high, or very high risk of a surgery-related stroke.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Acidente Vascular Cerebral , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Estudos de Coortes , Feminino , Humanos , Modelos Logísticos , Masculino , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Curva ROC , Medição de Risco , Fatores de Risco , Acidente Vascular Cerebral/epidemiologia , Acidente Vascular Cerebral/etiologia
16.
Plant Sci ; 301: 110691, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33218649

RESUMO

KNOTTED1-LIKE HOMEOBOX (KNOX) genes are a family of plant-specific homeobox transcription factors with important roles in plant development that have been classified into two subfamilies with differential expression domains and functions. Studies in angiosperms have shown that class I members are related to the maintenance of meristem homeostasis and leaf development, whereas class II members promote differentiation of tissues and organs. However, little is known about its diversification and function in gymnosperms. By combining PCR-based detection and transcriptome data analysis, we identified four class I and two class II KNOX genes in Pinus pinaster. Expression analyses showed that class I members were mainly expressed in meristematic regions and differentiating tissues, with practically no expression in lateral organs, whereas expression of class II members was restricted to lateral organs. Furthermore, overexpression of P. pinaster KNOX genes in Arabidopsis thaliana caused similar phenotypic effects to those described for their angiosperms counterparts. This is the first time to our knowledge that functional analyses of class II members are reported in a conifer species. These results suggest a high conservation of the KNOX gene family throughout seed plants, as the functional differentiation of both subfamilies observed in angiosperms might be partially conserved in gymnosperms.


Assuntos
Pinus/genética , Proteínas de Plantas/genética , Arabidopsis/genética , Expressão Gênica , Proteínas de Homeodomínio/genética , Meristema/genética , Especificidade de Órgãos , Fenótipo , Fatores de Transcrição/genética
17.
Front Microbiol ; 10: 1078, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31164878

RESUMO

Bacteria have been constantly competing for nutrients and space for billions of years. During this time, they have evolved many different molecular mechanisms by which to secrete proteinaceous effectors in order to manipulate and often kill rival bacterial and eukaryotic cells. These processes often employ large multimeric transmembrane nanomachines that have been classified as types I-IX secretion systems. One of the most evolutionarily versatile are the Type IV secretion systems (T4SSs), which have been shown to be able to secrete macromolecules directly into both eukaryotic and prokaryotic cells. Until recently, examples of T4SS-mediated macromolecule transfer from one bacterium to another was restricted to protein-DNA complexes during bacterial conjugation. This view changed when it was shown by our group that many Xanthomonas species carry a T4SS that is specialized to transfer toxic bacterial effectors into rival bacterial cells, resulting in cell death. This review will focus on this special subtype of T4SS by describing its distinguishing features, similar systems in other proteobacterial genomes, and the nature of the effectors secreted by these systems and their cognate inhibitors.

18.
Plant Physiol Biochem ; 123: 304-318, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29278847

RESUMO

WUSCHEL-RELATED HOMEOBOX (WOX) genes are key players controlling stem cells in plants and can be divided into three clades according to the time of their appearance during plant evolution. Our knowledge of stem cell function in vascular plants other than angiosperms is limited, they separated from gymnosperms ca 300 million years ago and their patterning during embryogenesis differs significantly. For this reason, we have used the model gymnosperm Pinus pinaster to identify WOX genes and perform a thorough analysis of their gene expression patterns. Using transcriptomic data from a comprehensive range of tissues and stages of development we have shown three major outcomes: that the P. pinaster genome encodes at least fourteen members of the WOX family spanning all the major clades, that the genome of gymnosperms contains a WOX gene with no homologues in angiosperms representing a transitional stage between intermediate- and WUS-clade proteins, and that we can detect discrete WUS and WOX5 transcripts for the first time in a gymnosperm.


Assuntos
Cycadopsida , Regulação da Expressão Gênica de Plantas/fisiologia , Genes de Plantas/fisiologia , Proteínas de Homeodomínio , Família Multigênica/fisiologia , Pinus , Proteínas de Plantas , Cycadopsida/genética , Cycadopsida/metabolismo , Proteínas de Homeodomínio/biossíntese , Proteínas de Homeodomínio/genética , Pinus/genética , Pinus/metabolismo , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética
19.
Braz. dent. j ; 33(5): 9-17, Sep.-Oct. 2022. graf
Artigo em Inglês | LILACS-Express | LILACS, BBO - odontologia (Brasil) | ID: biblio-1403791

RESUMO

Abstract This study assessed the cell viability, cytokine production, and mineralization potential of human dental pulp cells (hDPCs) after exposure to lipopolysaccharide (LPS) and application of calcium silicate-based materials (CSBM). Characterization of the CSBM was performed by infrared spectroscopy (n = 3). Extracts of Bio-C Repair, Biodentine, Cimmo HD, and MTA Repair HP were prepared and diluted (1:1, 1:4, and 1:16). Culture of hDPCs was established and treated or not with 1 µg/mL of LPS from Escherichia coli for 7 days. MTT assay was used to assess cell viability at 24, 48, and 72 h (n = 6). Alkaline phosphatase (ALP) activity was assayed on day 7 (n = 4). Il-10 and TNF-α were quantified by ELISA at 24 h (n = 6). Data were analyzed by ANOVA and Tukey's test (α = 0.05). Cell viability of LPS-activated hPDCs was higher than untreated control in 48 and 72 h (p < 0.05). Differences between non-treated and LPS-activated hPDCs were observed for Biodentine and Cimmo HP (p < 0.05). The CSBM influenced the cell viability (p < 0.05). ALP activity was higher in LPS-activated hDPCs (p < 0.05). No changes in the concentration of TNF-α were observed between groups (p > 0.05). The CSBM increased the Il-10 production (p < 0.05). LPS-activated hDPCs presented increased cell viability and ALP activity. The CSBM showed mild toxicity and was able to enhance the cell viability and mineralization potential of untreated and LPS-activated hDPCs. The CSBM also induced anti-inflammatory mechanisms without compromising pro-inflammatory ones.


Resumo Este estudo avaliou a viabilidade celular, produção de citocinas e potencial de mineralização de células da polpa dentária humana (hDPCs) após exposição a lipopolissacarídeo (LPS) e aplicação de materiais à base de silicato de cálcio (CSBM). A caracterização do CSBM foi realizada por espectroscopia (n = 3). Extratos de Bio-C Repair, Biodentine, Cimmo HD e MTA Repair HP foram preparados e diluídos (1: 1, 1: 4 e 1:16). A cultura de hDPCs foi estabelecida e tratada ou não com 1 µg / mL de LPS de Escherichia coli por 7 dias. O ensaio de MTT foi usado para avaliar a viabilidade celular em 24, 48 e 72 h (n = 6). A atividade da fosfatase alcalina (ALP) foi avaliada no dia 7 (n = 4). Il-10 e TNF-α foram quantificados por ELISA em 24 h (n = 6). Os dados foram analisados ​​por ANOVA e teste de Tukey (α = 0,05). A viabilidade celular das hPDCs ativados por LPS foi maior do que o controle não tratado em 48 e 72 h (p <0,05). Diferenças entre hPDCs não tratados e ativados por LPS foram observados para Biodentine e Cimmo HP (p < 0,05). Os CSBM influenciaram na viabilidade celular (p <0,05). A atividade de ALP foi maior em hDPCs ativadas por LPS (p <0,05). Não foram observadas alterações na concentração de TNF-α entre os grupos (p> 0,05). Os CSBM aumentaram a produção de Il-10 (p < 0,05). Os hDPCs ativados por LPS apresentaram um aumento na viabilidade celular e atividade ALP. Os CSBM apresentaram toxicidade moderada e foram capazes de aumentar a viabilidade celular e o potencial de mineralização de hDPCs não tratados e ativados por LPS. Os CSBM também induziram mecanismos anti-inflamatórios sem comprometer os pró-inflamatórios.

20.
Braz. dent. j ; 33(2): 73-82, Mar.-Apr. 2022. tab, graf
Artigo em Inglês | LILACS-Express | LILACS, BBO - odontologia (Brasil) | ID: biblio-1374622

RESUMO

Abstract This study was conducted to assess the in vitro response of human periodontal ligament stem cells (hPDLSCs) to bacterial lipopolysaccharide (LPS) activation and application of three calcium silicate-based materials (CSBM): Bio-C Sealer, MTA Fillapex and Cimmo HP. Characterization of the CSBM was performed by FTIR (n = 3). Extracts of Bio-C Sealer, MTA Fillapex and Cimmo HP were prepared and diluted (1:1, 1:4 and 1:16). Culture of hPDLSCs was established and treated or not with LPS from Escherichia coli (1 µg/mL) for 7 days. MTT assay was used to assess cell viability at 24, 48 and 72 h (n = 9). Alkaline phosphatase (ALP) activity was indirectly assayed at day 7 (n = 5). TNF-α and Il -1 0 cytokines were quantified by ELISA at 24h-cell supernatants (n = 6). Data were analyzed by ANOVA and Tukey's test (α = 0.05). The cell viability of the LPS-activated hPDLSCs were higher than untreated control (p < 0.05). The application of CSBM affected the cell viability of untreated and LPS-activated cells (p < 0.05). ALP activity was higher for Bio-C Sealer and Cimmo HP in untreated and LPS-activated cells, respectively (p < 0.05). Application of CSBM normalized the TNF-α secretion in the LPS-activated cells (p < 0.05). Only MTA Fillapex in untreated hPDLSCs presented higher values of Il -1 0 (p < 0.05). Taken collectively, the results suggests that the simulation of the inflammatory process by LPS affect the in vitro response the hPDLSCs to the application of the CSBM.


Resumo Este estudo objetivou avaliar a resposta in vitro de células-tronco do ligamento periodontal humano (hPDLSCs) à ativação por lipopolissacarídeo bacteriano (LPS) e aplicação de três materiais à base de silicato de cálcio (CSBM): Bio-C Sealer, MTA Fillapex e Cimmo HP. A caracterização dos CSBM foi realizada por FTIR (n = 3). Extratos de Bio-C Sealer, MTA Fillapex e Cimmo HP foram preparados e diluídos (1:1, 1: 4 e 1:16). A cultura de hPDLSCs foi estabelecida e tratada ou não com 1 µg / mL de LPS de Escherichia coli por 7 dias. O ensaio de MTT foi usado para avaliar a viabilidade celular em 24, 48 e 72 h (n = 9). A atividade de ALP foi avaliada indiretamente no dia 7 (n = 5). As citocinas TNF-α e Il-10 foram quantificadas por ELISA em sobrenadantes de células em 24h (n = 6). Os dados foram analisados por ANOVA e teste de Tukey (α = 0,05). A viabilidade celular das hPDLSCs ativados por LPS foi maior do que o controle (p <0,05). A aplicação dos CSBM afetou a viabilidade celular de células ativadas ou não por LPS (p <0,05). A atividade de ALP foi maior para Bio-C Sealer e Cimmo HP em células não ativadas e ativadas por LPS, respectivamente (p <0,05). A aplicação dos CSBM normalizou a secreção de TNF-α nas células ativadas por LPS (p <0,05). Apenas o MTA Fillapex em hPDLSCs não ativadas apresentou valores mais elevados de Il-10 (p <0,05). Em conclusão, os resultados sugerem que a simulação do processo inflamatório por LPS afetou a resposta in vitro de células-tronco do ligamento periodontal e de materiais à base de silicato de cálcio.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA